Probing structural features of Alzheimers amyloid-β pores in bilayers using site-specific amino acid substitutions

Ricardo Capone, Hyunbum Jang, Samuel A. Kotler, Bruce L. Kagan, Ruth Nussinov*, Ratnesh Lal

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

A current hypothesis for the pathology of Alzheimers disease (AD) proposes that amyloid-β (Aβ) peptides induce uncontrolled, neurotoxic ion flux across cellular membranes. The mechanism of ion flux is not fully understood because no experiment-based Aβ channel structures at atomic resolution are currently available (only a few polymorphic states have been predicted by computational models). Structural models and experimental evidence lend support to the view that the Aβ channel is an assembly of loosely associated mobile β-sheet subunits. Here, using planar lipid bilayers and molecular dynamics (MD) simulations, we show that amino acid substitutions can be used to infer which residues are essential for channel structure. We created two Aβ 1-42 peptides with point mutations: F19P and F20C. The substitution of Phe19 with Pro inhibited channel conductance. MD simulation suggests a collapsed pore of F19P channels at the lower bilayer leaflet. The kinks at the Pro residues in the pore-lining β-strands induce blockage of the solvated pore by the N-termini of the chains. The cysteine mutant is capable of forming channels, and the conductance behavior of F20C channels is similar to that of the wild type. Overall, the mutational analysis of the channel activity performed in this work tests the proposition that the channels consist of a β-sheet rich organization, with the charged/polar central strand containing the mutation sites lining the pore, and the C-terminal strands facing the hydrophobic lipid tails. A detailed understanding of channel formation and its structure should aid studies of drug design aiming to control unregulated Aβ-dependent ion fluxes.

Original languageEnglish
Pages (from-to)776-785
Number of pages10
JournalBiochemistry
Volume51
Issue number3
DOIs
StatePublished - 24 Jan 2012

Funding

FundersFunder number
National Cancer InstituteZIABC010440

    Fingerprint

    Dive into the research topics of 'Probing structural features of Alzheimers amyloid-β pores in bilayers using site-specific amino acid substitutions'. Together they form a unique fingerprint.

    Cite this