Prior knowledge for part correspondence

Oliver Van Kaick, Andrea Tagliasacchi, Oana Sidi, Hao Zhang, Daniel Cohen-Or, Lior Wolf, Ghassan Hamarneh

Research output: Contribution to journalConference articlepeer-review

Abstract

Classical approaches to shape correspondence base their computation purely on the properties, in particular geometric similarity, of the shapes in question. Their performance still falls far short of that of humans in challenging cases where corresponding shape parts may differ significantly in geometry or even topology. We stipulate that in these cases, shape correspondence by humans involves recognition of the shape parts where prior knowledge on the parts would play a more dominant role than geometric similarity. We introduce an approach to part correspondence which incorporates prior knowledge imparted by a training set of pre-segmented, labeled models and combines the knowledge with content-driven analysis based on geometric similarity between the matched shapes. First, the prior knowledge is learned from the training set in the form of per-label classifiers. Next, given two query shapes to be matched, we apply the classifiers to assign a probabilistic label to each shape face. Finally, by means of a joint labeling scheme, the probabilistic labels are used synergistically with pairwise assignments derived from geometric similarity to provide the resulting part correspondence. We show that the incorporation of knowledge is especially effective in dealing with shapes exhibiting large intra-class variations. We also show that combining knowledge and content analyses outperforms approaches guided by either attribute alone.

Original languageEnglish
Pages (from-to)553-562
Number of pages10
JournalComputer Graphics Forum
Volume30
Issue number2
DOIs
StatePublished - 2011
Event32nd Annual Conference on European Association for Computer Graphics, EUROGRAPHICS 2011 - Llandudno, Wales, United Kingdom
Duration: 11 Apr 201115 Apr 2011

Fingerprint

Dive into the research topics of 'Prior knowledge for part correspondence'. Together they form a unique fingerprint.

Cite this