TY - JOUR
T1 - Primitive recursive decidability for the ring of integers of the compositum of all symmetric extensions of Q
AU - Jarden, Moshe
AU - Razon, Aharon
N1 - Publisher Copyright:
© 2021 Cambridge University Press. All rights reserved.
PY - 2021/5
Y1 - 2021/5
N2 - Let Qsymm be the compositum of all symmetric extensions of Q, i.e., the finite Galois extensions with Galois group isomorphic to Sn for some positive integer n, and let Zsymm be the ring of integers insideQsymm. Then, Th(Zsymm) is primitive recursively decidable.
AB - Let Qsymm be the compositum of all symmetric extensions of Q, i.e., the finite Galois extensions with Galois group isomorphic to Sn for some positive integer n, and let Zsymm be the ring of integers insideQsymm. Then, Th(Zsymm) is primitive recursively decidable.
UR - http://www.scopus.com/inward/record.url?scp=85085292532&partnerID=8YFLogxK
U2 - 10.1017/S001708952000018X
DO - 10.1017/S001708952000018X
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85085292532
SN - 0017-0895
VL - 63
SP - 291
EP - 296
JO - Glasgow Mathematical Journal
JF - Glasgow Mathematical Journal
IS - 2
ER -