Primitive recursive decidability for the ring of integers of the compositum of all symmetric extensions of Q

Moshe Jarden, Aharon Razon

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Let Qsymm be the compositum of all symmetric extensions of Q, i.e., the finite Galois extensions with Galois group isomorphic to Sn for some positive integer n, and let Zsymm be the ring of integers insideQsymm. Then, Th(Zsymm) is primitive recursively decidable.

Original languageEnglish
Pages (from-to)291-296
Number of pages6
JournalGlasgow Mathematical Journal
Volume63
Issue number2
DOIs
StatePublished - May 2021

Fingerprint

Dive into the research topics of 'Primitive recursive decidability for the ring of integers of the compositum of all symmetric extensions of Q'. Together they form a unique fingerprint.

Cite this