Pressure-induced magnetic switching and linkage isomerism in K 0.4Fe4[Cr(CN)6]2.8·16H 2O: X-ray absorption and magnetic circular dichroism studies

Eugenio Coronado, M. Carmen Giménez-López, Tomasz Korzeniak, Georgiy Levchenko, Francisco M. Romero, Alfredo Segura, Valentín García-Baonza, Julio C. Cezar, Frank M.F. De Groot, Alla Milner, Moshe Paz-Pasternak

Research output: Contribution to journalArticlepeer-review

Abstract

The effect of applied pressure on the magnetic properties of the Prussian blue analogue K0.4Fe4[Cr(CN)6] 2.8·16H2O (1) has been analyzed by dc and ac magnetic susceptibility measurements. Under ambient conditions, 1 orders ferromagnetically at a critical temperature (Tc) of 18.5 K. Under application of pressure in the 0-1200 MPa range, the magnetization of the material decreases and its critical temperature shifts to lower temperatures, reaching Tc = 7.5 K at 1200 MPa. Pressure-dependent Raman and Mössbauer spectroscopy measurements show that this striking behavior is due to the isomerization of some CrIII-C≡N-FeII linkages to the CrIII-N≡C-FeII form. As a result, the ligand field around the iron(II) centers increases, and the diamagnetic low-spin state is populated. As the number of diamagnetic centers in the cubic lattice increases, the net magnetization and critical temperature of the material decrease considerably. The phenomenon is reversible: releasing the pressure restores the magnetic properties of the original material. However, we have found that under more severe pressure conditions, a metastable sample containing 22% CrIII-N≡C-FeII linkages can be obtained. X-ray absorption spectroscopy and magnetic circular dichroism of this metastable sample confirm the linkage isomerization process.

Original languageEnglish
Pages (from-to)15519-15532
Number of pages14
JournalJournal of the American Chemical Society
Volume130
Issue number46
DOIs
StatePublished - 19 Nov 2008

Fingerprint

Dive into the research topics of 'Pressure-induced magnetic switching and linkage isomerism in K 0.4Fe4[Cr(CN)6]2.8·16H 2O: X-ray absorption and magnetic circular dichroism studies'. Together they form a unique fingerprint.

Cite this