TY - JOUR
T1 - Prenatal cocaine exposure alters signal transduction in the brain D1 dopamine receptor system
AU - Friedman, Eitan
AU - Wang, Hoau Yan
PY - 1998
Y1 - 1998
N2 - Cocaine use during pregnancy may result in persistent behavioral abnormalities in the newborn. Animal studies show behavioral and neurochemical alterations in offspring that were exposed to cocaine prenatally. The monoamine neurons, including those containing dopamine, appear and become operational prenatally and mature during early postnatal life. It is therefore conceivable that exposure to cocaine during gestation may critically affect normal development and subsequently cause protracted postnatal neurochemical and behavioral changes. The data we obtained demonstrate that prenatal exposure to cocaine in the rabbit impairs signal transduction via the D1 but not the D2 dopamine receptor system. This is reflected in impaired dopamine-stimulated [35S]GTPγS binding to Gαs without affecting binding of the nucleotide to Gαi in both cortex and striatum of rabbit offspring. This selective reduction in D1 dopamine receptor-mediated activation of Gs protein increased in severity as the dose of cocaine administered to the pregnant darns was increased. Maximal impairment was observed after treatment with two daily injections of 3 mg/kg of cocaine HC1. The reduction in dopamine-stimulated GTP binding to Gαs did not result from a decrease in concentration of membrane Gαs protein or D1 dopamine receptors. The data also indicate that in utero cocaine exposure causes persistent uncoupling of the D1 dopamine receptors from their associated Gs protein which appears as early as gestational day 22 and persists to postnatal day 100. The reduction in D1 dopamine receptor-mediated signal transduction may be mediated by posttranslational modifications of the D1 dopamine receptor or of Gsα such as phosphorylation, which result in altered coupling between these membrane components. The resultant attenuated D1 dopamine receptor-mediated signaling may ultimately underlie both long-lasting behavioral dysfunction and morphologic changes which are associated with prenatal cocaine exposure in the rabbit.
AB - Cocaine use during pregnancy may result in persistent behavioral abnormalities in the newborn. Animal studies show behavioral and neurochemical alterations in offspring that were exposed to cocaine prenatally. The monoamine neurons, including those containing dopamine, appear and become operational prenatally and mature during early postnatal life. It is therefore conceivable that exposure to cocaine during gestation may critically affect normal development and subsequently cause protracted postnatal neurochemical and behavioral changes. The data we obtained demonstrate that prenatal exposure to cocaine in the rabbit impairs signal transduction via the D1 but not the D2 dopamine receptor system. This is reflected in impaired dopamine-stimulated [35S]GTPγS binding to Gαs without affecting binding of the nucleotide to Gαi in both cortex and striatum of rabbit offspring. This selective reduction in D1 dopamine receptor-mediated activation of Gs protein increased in severity as the dose of cocaine administered to the pregnant darns was increased. Maximal impairment was observed after treatment with two daily injections of 3 mg/kg of cocaine HC1. The reduction in dopamine-stimulated GTP binding to Gαs did not result from a decrease in concentration of membrane Gαs protein or D1 dopamine receptors. The data also indicate that in utero cocaine exposure causes persistent uncoupling of the D1 dopamine receptors from their associated Gs protein which appears as early as gestational day 22 and persists to postnatal day 100. The reduction in D1 dopamine receptor-mediated signal transduction may be mediated by posttranslational modifications of the D1 dopamine receptor or of Gsα such as phosphorylation, which result in altered coupling between these membrane components. The resultant attenuated D1 dopamine receptor-mediated signaling may ultimately underlie both long-lasting behavioral dysfunction and morphologic changes which are associated with prenatal cocaine exposure in the rabbit.
UR - http://www.scopus.com/inward/record.url?scp=0031928547&partnerID=8YFLogxK
U2 - 10.1111/j.1749-6632.1998.tb09741.x
DO - 10.1111/j.1749-6632.1998.tb09741.x
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 9668411
AN - SCOPUS:0031928547
VL - 846
SP - 238
EP - 247
JO - Annals of the New York Academy of Sciences
JF - Annals of the New York Academy of Sciences
SN - 0077-8923
ER -