Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis

Amelie Haugg*, Fabian M. Renz, Andrew A. Nicholson, Cindy Lor, Sebastian J. Götzendorfer, Ronald Sladky, Stavros Skouras, Amalia McDonald, Cameron Craddock, Lydia Hellrung, Matthias Kirschner, Marcus Herdener, Yury Koush, Marina Papoutsi, Jackob Keynan, Talma Hendler, Kathrin Cohen Kadosh, Catharina Zich, Simon H. Kohl, Manfred HallschmidJeff MacInnes, R. Alison Adcock, Kathryn C. Dickerson, Nan Kuei Chen, Kymberly Young, Jerzy Bodurka, Michael Marxen, Shuxia Yao, Benjamin Becker, Tibor Auer, Renate Schweizer, Gustavo Pamplona, Ruth A. Lanius, Kirsten Emmert, Sven Haller, Dimitri Van De Ville, Dong Youl Kim, Jong Hwan Lee, Theo Marins, Fukuda Megumi, Bettina Sorger, Tabea Kamp, Sook Lei Liew, Ralf Veit, Maartje Spetter, Nikolaus Weiskopf, Frank Scharnowski, David Steyrl

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

21 Scopus citations

Fingerprint

Dive into the research topics of 'Predictors of real-time fMRI neurofeedback performance and improvement – A machine learning mega-analysis'. Together they form a unique fingerprint.

Medicine & Life Sciences