Predicting majority rule: Evaluating the uncovered set and the strong point

Jacob Bower-Bir, William Bianco*, Nicholas D’Amico, Christopher Kam, Itai Sened, Regina Smyth

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

This paper compares two solution concepts for majority rule decision-making in multi-dimensional settings: the uncovered set and the strong point. Our goal is to determine which of these solution concepts is the appropriate generalization of the median voter theorem to more complex (and more realistic) multi-dimensional majority-rule settings. By making this comparison, we also contribute to the debate about the degree of sophisticated decision-making exhibited by experimental subjects and their real-world counterparts. Using data from eleven previously-published majority rule experiments and analytic techniques drawn from geography, our analysis confirms expectations that the uncovered set provides accurate predictions of majority-rule decision-making; and, moreover, that the strong point provides little added insight, either as a solution concept on its own, or as a predictor of where outcomes lie inside the uncovered set.

Original languageEnglish
Pages (from-to)650-672
Number of pages23
JournalJournal of Theoretical Politics
Volume27
Issue number4
DOIs
StatePublished - 1 Oct 2015
Externally publishedYes

Keywords

  • Majority rule
  • median voter theorem
  • modeling
  • spatial
  • strong point
  • uncovered set

Fingerprint

Dive into the research topics of 'Predicting majority rule: Evaluating the uncovered set and the strong point'. Together they form a unique fingerprint.

Cite this