Pre-ovulatory intercellular regulation of miR-125a-3p within mouse ovarian follicles

Hadas Grossman, Efrat Har-Paz, Natalie Gindi, Irit Miller, Ruth Shalgi*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


miR-125a-3p, a post-transcription regulator of Fyn kinase, is expressed in mouse pre-ovulatory follicles; its expression within the follicle decreases toward ovulation. Our aim was to follow the synthesis of miR-125a-3p and regulation of its expression in all follicular compartments, focusing on intercellular communication. Mural granulosa cells (GCs) or cumulus cells (CCs) were transfected with either scrambled-miR (negative control) or miR-125a-3p mimic. Freshly isolated GCs or CCs were incubated overnight in culture media conditioned by transfected cells. To examine a possible role of gap junctions in the regulation of miR-125a-3p, we incubated large antral follicles in the presence of carbenoxolone, a gap-junction inhibitor, and triggered them to mature with hGC. Levels of miR-125a family members in GCs, CCs, oocytes, and culture media were measured by qPCR. We showed that miR-125a-3p is synthesized by all follicular components, but is regulated within the follicle as a whole. It is secreted by mural-GCs and taken up by CCs, where it remains functional, and vice versa, mural-GCs can take up miR-125a-3p secreted by CCs. miR-125a-3p is transcribed and accumulated in oocytes throughout oogenesis. Transcriptionally quiescent GV oocytes utilize their accompanying follicular cells to monitor the level of miR-125a-3p within them, as indicated in an ex vivo follicle culture. Our study reveals that miR-125a-3p expression is modulated by a network of intercellular communications within pre-ovulatory follicles, thus enabling a coordinated decrease of miR-125a-3p toward ovulation.

Original languageEnglish
Pages (from-to)215-225
Number of pages11
Issue number2
StatePublished - 2020


Dive into the research topics of 'Pre-ovulatory intercellular regulation of miR-125a-3p within mouse ovarian follicles'. Together they form a unique fingerprint.

Cite this