Post-quantum zero knowledge in constant rounds

Nir Bitansky, Omri Shmueli

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

31 Scopus citations

Abstract

We construct a constant-round zero-knowledge classical argument for NP secure against quantum attacks. We assume the existence of Quantum Fully-Homomorphic Encryption and other standard primitives, known based on the Learning with Errors Assumption for quantum algorithms. As a corollary, we also obtain a constant-round zero-knowledge quantum argument for QMA. At the heart of our protocol is a new no-cloning non-black-box simulation technique.

Original languageEnglish
Title of host publicationSTOC 2020 - Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing
EditorsKonstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, Julia Chuzhoy
PublisherAssociation for Computing Machinery
Pages269-279
Number of pages11
ISBN (Electronic)9781450369794
DOIs
StatePublished - 8 Jun 2020
Event52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020 - Chicago, United States
Duration: 22 Jun 202026 Jun 2020

Publication series

NameProceedings of the Annual ACM Symposium on Theory of Computing
ISSN (Print)0737-8017

Conference

Conference52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020
Country/TerritoryUnited States
CityChicago
Period22/06/2026/06/20

Funding

FundersFunder number
Horizon 2020 Framework Programme756482

    Keywords

    • Non-black-box simulation
    • Post-quantum cryptography
    • Zero-knowledge

    Fingerprint

    Dive into the research topics of 'Post-quantum zero knowledge in constant rounds'. Together they form a unique fingerprint.

    Cite this