Polylogarithmic bounds on the competitiveness of min-cost perfect matching with delays

Yossi Azar, Ashish Chiplunkar, Haim Kaplan

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

33 Scopus citations

Abstract

We consider the problem of online Min-cost Perfect Matching with Delays (MPMD) recently introduced by Emek et al, (STOC 2016). This problem is defined on an underly- ing n-point metric space. An adversary presents real-time requests online at points of the metric space, and the al- gorithm is required to match them, possibly after keeping them waiting for some time. The cost incurred is the sum of the distances between matched pairs of requests (the connection cost), and the sum of the waiting times of the requests (the delay cost). We prove the first logarithmic upper bound and the first polylogarithmic lower bound on the randomized competitive ratio of this problem. We present an algorithm with a competitive ratio of O(log n), which improves the up- per bound of O(log2 n + log Δ) of Emek et al, by removing the dependence on Δ, the aspect ratio of the metric space (which can be unbounded as a function of n). The core of our algorithm is a deterministic algorithm for MPMD on metrics induced by edge-weighted trees of height h, whose cost is guaranteed to be at most O(1) times the connection cost plus O(h) times the delay cost of every feasible solution. The reduction from MPMD on arbitrary metrics to MPMD on trees is achieved using the result on embedding n-point metric spaces into distributions over weighted hierarchically separated trees of height O(log n), with distortion O(log n). We also prove a lower bound of ( ρ log n) on the competitive ratio of any randomized algorithm. This is the first lower bound which increases with n, and is attained on the metric of n equally spaced points on a line.

Original languageEnglish
Title of host publication28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
EditorsPhilip N. Klein
PublisherAssociation for Computing Machinery
Pages1051-1061
Number of pages11
ISBN (Electronic)9781611974782
DOIs
StatePublished - 2017
Event28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017 - Barcelona, Spain
Duration: 16 Jan 201719 Jan 2017

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
Volume0

Conference

Conference28th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2017
Country/TerritorySpain
CityBarcelona
Period16/01/1719/01/17

Funding

FundersFunder number
Israel Science Foundation1841-14
Tel Aviv University
Israeli Centers for Research Excellence4/11

    Fingerprint

    Dive into the research topics of 'Polylogarithmic bounds on the competitiveness of min-cost perfect matching with delays'. Together they form a unique fingerprint.

    Cite this