Polyglot semantic parsing in APIs

Kyle Richardson, Jonathan Berant, Jonas Kuhn

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Traditional approaches to semantic parsing (SP) work by training individual models for each available parallel dataset of text-meaning pairs. In this paper, we explore the idea of polyglot semantic translation, or learning semantic parsing models that are trained on multiple datasets and natural languages. In particular, we focus on translating text to code signature representations using the software component datasets of Richardson and Kuhn (2017a,b). The advantage of such models is that they can be used for parsing a wide variety of input natural languages and output programming languages, or mixed input languages, using a single unified model. To facilitate modeling of this type, we develop a novel graph-based decoding framework that achieves state-of-The-Art performance on the above datasets, and apply this method to two other benchmark SP tasks.

Original languageEnglish
Title of host publicationLong Papers
PublisherAssociation for Computational Linguistics (ACL)
Pages720-730
Number of pages11
ISBN (Electronic)9781948087278
StatePublished - 2018
Event2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2018 - New Orleans, United States
Duration: 1 Jun 20186 Jun 2018

Publication series

NameNAACL HLT 2018 - 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies - Proceedings of the Conference
Volume1

Conference

Conference2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL HLT 2018
Country/TerritoryUnited States
CityNew Orleans
Period1/06/186/06/18

Fingerprint

Dive into the research topics of 'Polyglot semantic parsing in APIs'. Together they form a unique fingerprint.

Cite this