TY - JOUR
T1 - Platelet-derived growth factor BB mimics serum-induced dispersal of pancreatic epithelial cell clusters
AU - Hiram-Bab, Sahar
AU - Katz, Liora S.
AU - Shapira, Hagit
AU - Sandbank, Judith
AU - Gershengorn, Marvin C.
AU - Oron, Yoram
PY - 2014/6
Y1 - 2014/6
N2 - We showed previously that proliferating human islet-derived de-differentiated cells (DIDs) exhibit many characteristics of mesenchymal stem cells. Dispersed DIDs can be induced by serum deprivation to undergo mesenchymal-to-epithelial transition and aggregate into epithelial cell clusters (ECCs). Conversely, ECCs can be induced to disperse and undergo epithelial-to-mesenchymal transition (EMT) by re-addition of mammalian sera. In this study, we show that platelet-derived growth factor BB (PDGF-BB) mimics and mediates serum-induced ECCs' dispersal accompanied by accumulation of cytoplasmic β-catenin and a decrease in the levels of insulin and glucagon mRNAs. Moreover, we show that PDGF-BB-induced dispersal of ECCs is a more general phenomenon that occurs also with bone marrow mesenchymal stem cells (BM-MSCs) and dermal fibroblasts (DFs). In DIDs, BM-MSCs, and DFs, PDGF decreased the levels of DKK1 mRNA, suggesting involvement of the Wnt signaling pathway. PDGF-BB stimulated a significant increase in S473 phosphorylation of Akt and the PI3K specific inhibitor (PIP828) partially inhibited PDGF-BB-induced ECC dispersal. Lastly, the PDGF-receptor (PDGF-R) antagonist JNJ-10198409 inhibited both PDGF-BB-and serum-induced ECC dispersal. Epidermal growth factor (EGF), which shares most of the PDGF signaling pathway, did not induce dispersal and only weakly stimulated Akt phosphorylation. Our data suggest that PDGF-BB mediates serum-induced DIDs dispersal, correlated with the activation of the PI3K-Akt pathway. J. Cell. Physiol. 229: 743-751, 2014.
AB - We showed previously that proliferating human islet-derived de-differentiated cells (DIDs) exhibit many characteristics of mesenchymal stem cells. Dispersed DIDs can be induced by serum deprivation to undergo mesenchymal-to-epithelial transition and aggregate into epithelial cell clusters (ECCs). Conversely, ECCs can be induced to disperse and undergo epithelial-to-mesenchymal transition (EMT) by re-addition of mammalian sera. In this study, we show that platelet-derived growth factor BB (PDGF-BB) mimics and mediates serum-induced ECCs' dispersal accompanied by accumulation of cytoplasmic β-catenin and a decrease in the levels of insulin and glucagon mRNAs. Moreover, we show that PDGF-BB-induced dispersal of ECCs is a more general phenomenon that occurs also with bone marrow mesenchymal stem cells (BM-MSCs) and dermal fibroblasts (DFs). In DIDs, BM-MSCs, and DFs, PDGF decreased the levels of DKK1 mRNA, suggesting involvement of the Wnt signaling pathway. PDGF-BB stimulated a significant increase in S473 phosphorylation of Akt and the PI3K specific inhibitor (PIP828) partially inhibited PDGF-BB-induced ECC dispersal. Lastly, the PDGF-receptor (PDGF-R) antagonist JNJ-10198409 inhibited both PDGF-BB-and serum-induced ECC dispersal. Epidermal growth factor (EGF), which shares most of the PDGF signaling pathway, did not induce dispersal and only weakly stimulated Akt phosphorylation. Our data suggest that PDGF-BB mediates serum-induced DIDs dispersal, correlated with the activation of the PI3K-Akt pathway. J. Cell. Physiol. 229: 743-751, 2014.
UR - http://www.scopus.com/inward/record.url?scp=84894262467&partnerID=8YFLogxK
U2 - 10.1002/jcp.24493
DO - 10.1002/jcp.24493
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84894262467
SN - 0021-9541
VL - 229
SP - 743
EP - 751
JO - Journal of Cellular Physiology
JF - Journal of Cellular Physiology
IS - 6
ER -