TY - JOUR
T1 - Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum
T2 - An in vitro study
AU - Feuerstein, Osnat
AU - Persman, Nir
AU - Weiss, Ervin I.
PY - 2004/11
Y1 - 2004/11
N2 - The antibacterial effect of visible light irradiation combined with photosensitizers has been reported. The objective of this was to test the effect of visible light irradiation without photosensitizers on the viability of oral microorganisms. Strains of Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Streptococcus faecalis in suspension or grown on agar were exposed to visible light at wavelengths of 400-500 nm. These wavelengths are used to photopolymerize composite resins widely used for dental restoration. Three photocuring light sources, quartz-tungsten-halogen lamp, light-emitting diode and plasma-arc, at power densities between 260 and 1300 mW/cm2 were used for up to 3 min. Bacterial samples were also exposed to a near-infrared diode laser (wavelength, 830 nm), using identical irradiation parameters for comparison. The results show that blue light sources exert a phototoxic effect on P. gingivalis and F. nucleatum. The minimal inhibitory dose for P. gingivalis and F. nucleatum was 16-62 J/cm2, a value significantly lower than that for S. mutans and S. faecalis (159-212 J/cm 2). Near-infrared diode laser irradiation did not affect any of the bacteria tested. Our results suggest that visible light sources without exogenous photosensitizers have a phototoxic effect mainly on Gram-negative periodontal pathogens.
AB - The antibacterial effect of visible light irradiation combined with photosensitizers has been reported. The objective of this was to test the effect of visible light irradiation without photosensitizers on the viability of oral microorganisms. Strains of Porphyromonas gingivalis, Fusobacterium nucleatum, Streptococcus mutans and Streptococcus faecalis in suspension or grown on agar were exposed to visible light at wavelengths of 400-500 nm. These wavelengths are used to photopolymerize composite resins widely used for dental restoration. Three photocuring light sources, quartz-tungsten-halogen lamp, light-emitting diode and plasma-arc, at power densities between 260 and 1300 mW/cm2 were used for up to 3 min. Bacterial samples were also exposed to a near-infrared diode laser (wavelength, 830 nm), using identical irradiation parameters for comparison. The results show that blue light sources exert a phototoxic effect on P. gingivalis and F. nucleatum. The minimal inhibitory dose for P. gingivalis and F. nucleatum was 16-62 J/cm2, a value significantly lower than that for S. mutans and S. faecalis (159-212 J/cm 2). Near-infrared diode laser irradiation did not affect any of the bacteria tested. Our results suggest that visible light sources without exogenous photosensitizers have a phototoxic effect mainly on Gram-negative periodontal pathogens.
UR - http://www.scopus.com/inward/record.url?scp=12944318823&partnerID=8YFLogxK
U2 - 10.1562/2004-06-13-RA-196.1
DO - 10.1562/2004-06-13-RA-196.1
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:12944318823
SN - 0031-8655
VL - 80
SP - 412
EP - 415
JO - Photochemistry and Photobiology
JF - Photochemistry and Photobiology
IS - 3
ER -