TY - JOUR
T1 - Phonon transport along long polymer chains with varying configurations
T2 - Effects of phonon scattering
AU - Zimbovskaya, Natalya A.
AU - Nitzan, Abraham
N1 - Publisher Copyright:
© 2023 Author(s).
PY - 2023/6/21
Y1 - 2023/6/21
N2 - Following recent molecular dynamic simulations [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)], we theoretically analyze how the phonon heat transport along a single polymer chain may be affected by varying the chain configuration. We suggest that phonon scattering controls the phonon heat conduction in strongly compressed (and tangled) chain when multiple random bends act as scattering centers for vibrational phonon modes, which results in the diffusive character of heat transport. As the chain is straightening up, the number of scatterers decreases, and the heat transport acquires nearly ballistic character. To analyze these effects, we introduce a model of a long atomic chain made out of identical atoms where some atoms are put in contact with scatterers and treat the phonon heat transfer through such a system as a multichannel scattering problem. We simulate the changes in the chain configurations by varying the number of the scatterers and mimic a gradual straightening of the chain by a gradual reducing of the number of scatterers attached to the chain atoms. It is demonstrated, in agreement with recently published simulation results, that the phonon thermal conductance shows a threshold-like transition from the limit where nearly all atoms are attached to the scatterers to the opposite limit where the scatterers vanish, which corresponds to a transition from the diffusive to the ballistic phonon transport.
AB - Following recent molecular dynamic simulations [M. Dinpajooh and A. Nitzan, J. Chem. Phys. 153, 164903 (2020)], we theoretically analyze how the phonon heat transport along a single polymer chain may be affected by varying the chain configuration. We suggest that phonon scattering controls the phonon heat conduction in strongly compressed (and tangled) chain when multiple random bends act as scattering centers for vibrational phonon modes, which results in the diffusive character of heat transport. As the chain is straightening up, the number of scatterers decreases, and the heat transport acquires nearly ballistic character. To analyze these effects, we introduce a model of a long atomic chain made out of identical atoms where some atoms are put in contact with scatterers and treat the phonon heat transfer through such a system as a multichannel scattering problem. We simulate the changes in the chain configurations by varying the number of the scatterers and mimic a gradual straightening of the chain by a gradual reducing of the number of scatterers attached to the chain atoms. It is demonstrated, in agreement with recently published simulation results, that the phonon thermal conductance shows a threshold-like transition from the limit where nearly all atoms are attached to the scatterers to the opposite limit where the scatterers vanish, which corresponds to a transition from the diffusive to the ballistic phonon transport.
UR - http://www.scopus.com/inward/record.url?scp=85162866641&partnerID=8YFLogxK
U2 - 10.1063/5.0155486
DO - 10.1063/5.0155486
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37326160
AN - SCOPUS:85162866641
SN - 0021-9606
VL - 158
JO - Journal of Chemical Physics
JF - Journal of Chemical Physics
IS - 23
M1 - 234903
ER -