TY - JOUR
T1 - Phase structure of SU(3) gauge theory with two flavors of symmetric-representation fermions
AU - DeGrand, Thomas
AU - Shamir, Yigal
AU - Svetitsky, Benjamin
PY - 2009/2/2
Y1 - 2009/2/2
N2 - We have performed numerical simulations of SU(3) gauge theory coupled to Nf=2 flavors of symmetric-representation fermions. The fermions are discretized with the tadpole-improved clover action. Our simulations are done on lattices of length L=6, 8, and 12. In all simulation volumes we observe a crossover from a strongly coupled confined phase to a weak-coupling deconfined phase. Degeneracies in screening masses, plus the behavior of the pseudoscalar decay constant, indicate that the deconfined phase is also a phase in which chiral symmetry is restored. The movement of the confinement transition as the volume is changed is consistent with avoidance of the basin of attraction of an infrared fixed point of the massless theory.
AB - We have performed numerical simulations of SU(3) gauge theory coupled to Nf=2 flavors of symmetric-representation fermions. The fermions are discretized with the tadpole-improved clover action. Our simulations are done on lattices of length L=6, 8, and 12. In all simulation volumes we observe a crossover from a strongly coupled confined phase to a weak-coupling deconfined phase. Degeneracies in screening masses, plus the behavior of the pseudoscalar decay constant, indicate that the deconfined phase is also a phase in which chiral symmetry is restored. The movement of the confinement transition as the volume is changed is consistent with avoidance of the basin of attraction of an infrared fixed point of the massless theory.
UR - http://www.scopus.com/inward/record.url?scp=61549139737&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.79.034501
DO - 10.1103/PhysRevD.79.034501
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:61549139737
SN - 1550-7998
VL - 79
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 3
M1 - 034501
ER -