Personalized mood prediction from patterns of behavior collected with smartphones

Brunilda Balliu*, Chris Douglas, Darsol Seok, Liat Shenhav, Yue Wu, Doxa Chatzopoulou, William Kaiser, Victor Chen, Jennifer Kim, Sandeep Deverasetty, Inna Arnaudova, Robert Gibbons, Eliza Congdon, Michelle G. Craske, Nelson Freimer, Eran Halperin, Sriram Sankararaman, Jonathan Flint*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Over the last ten years, there has been considerable progress in using digital behavioral phenotypes, captured passively and continuously from smartphones and wearable devices, to infer depressive mood. However, most digital phenotype studies suffer from poor replicability, often fail to detect clinically relevant events, and use measures of depression that are not validated or suitable for collecting large and longitudinal data. Here, we report high-quality longitudinal validated assessments of depressive mood from computerized adaptive testing paired with continuous digital assessments of behavior from smartphone sensors for up to 40 weeks on 183 individuals experiencing mild to severe symptoms of depression. We apply a combination of cubic spline interpolation and idiographic models to generate individualized predictions of future mood from the digital behavioral phenotypes, achieving high prediction accuracy of depression severity up to three weeks in advance (R2 ≥ 80%) and a 65.7% reduction in the prediction error over a baseline model which predicts future mood based on past depression severity alone. Finally, our study verified the feasibility of obtaining high-quality longitudinal assessments of mood from a clinical population and predicting symptom severity weeks in advance using passively collected digital behavioral data. Our results indicate the possibility of expanding the repertoire of patient-specific behavioral measures to enable future psychiatric research.

Original languageEnglish
Article number49
Journalnpj Digital Medicine
Volume7
Issue number1
DOIs
StatePublished - Dec 2024
Externally publishedYes

Funding

FundersFunder number
NSF-NRTR01MH122569, 1829071
National Science FoundationIII-1705121, CAREER-1943497
National Science Foundation
National Institutes of HealthR35GM125055
National Institutes of Health

    Fingerprint

    Dive into the research topics of 'Personalized mood prediction from patterns of behavior collected with smartphones'. Together they form a unique fingerprint.

    Cite this