Performance Bounds of Concatenated Polar Coding Schemes

Dina Goldin, David Burshtein

Research output: Contribution to journalArticlepeer-review


A concatenated coding scheme over binary memoryless symmetric (BMS) channels using a polarization transformation followed by outer sub-codes is analyzed. Achievable error exponents and upper bounds on the error rate are derived. The first bound is obtained using outer codes which are typical random linear codes. As a byproduct of this bound, it determines the rates of the outer codes. A lower bound on the error exponent that holds for all BMS channels with a given capacity is then derived. Improved bounds and approximations for finite blocklength codes using channel dispersions (normal approximation), as well as converse and approximate converse results, are also obtained. The bounds are compared with actual simulation results from the literature. For the cases considered, when transmitting over the binary input additive white Gaussian noise channel, there was only a small gap between the channel dispersion-based approximation and the actual error rate of concatenated BCH-polar codes.

Original languageEnglish
Article number8795553
Pages (from-to)7131-7148
Number of pages18
JournalIEEE Transactions on Information Theory
Issue number11
StatePublished - Nov 2019


  • Polar codes
  • concatenated codes
  • error exponents
  • finite length analysis


Dive into the research topics of 'Performance Bounds of Concatenated Polar Coding Schemes'. Together they form a unique fingerprint.

Cite this