Patterns, prototypes, performance: Classifying emotional user states

Dino Seppi*, Anton Batliner, Björn Schuller, Stefan Steidl, Thurid Vogt, Johannes Wagner, Laurence Devillers, Laurence Vidrascu, Noam Amir, Vered Aharonson

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

34 Scopus citations


In this paper, we report on classification results for emotional user states (4 classes, German database of children interacting with a pet robot). Starting with 5 emotion labels per word, we obtained chunks with different degrees of prototypicality. Six sites computed acoustic and linguistic features independently from each other. A total of 4232 features were pooled together and grouped into 10 low level descriptor types. For each of these groups separately and for all taken together, classification results using Support Vector Machines are reported for 150 features each with the highest individual Information Gain Ratio, for a scale of prototypicality. With both acoustic and linguistic features, we obtained a relative improvement of up to 27.6%, going from low to higher prototypicality.

Original languageEnglish
Pages (from-to)601-604
Number of pages4
JournalProceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH
StatePublished - 2008
EventINTERSPEECH 2008 - 9th Annual Conference of the International Speech Communication Association - Brisbane, QLD, Australia
Duration: 22 Sep 200826 Sep 2008


  • Automatic classification
  • Emotion
  • Feature types
  • Prototypes


Dive into the research topics of 'Patterns, prototypes, performance: Classifying emotional user states'. Together they form a unique fingerprint.

Cite this