## Abstract

Given an undirected graph G = (V, E, w) on n vertices with positive edge weights, a distance oracle is a space-efficient data structure that answers pairwise distance queries in fast runtime. The quality of a distance oracle is measured by three parameters: space, query time, and stretch. In a landmark paper by [Thorup and Zwick, 2001], they showed that for any integer parameter k ≥ 1, there exists a distance oracle with size O(kn^{1+1/k}), O(k) query time, and (2k− 1)-stretch error on the approximate distances. After that, there has been a line of subsequent improvements which culminated in the optimal trade-off of O(n^{1+1/k}) space, O(1) query time, and (2k − 1)-stretch [Chechik, 2015]. However, these line of constructions did not require that the distance oracle is capable of printing an actual path besides an approximate distance estimate, and there has been a performance gap between path-reporting distance oracles and ones that are not path-reporting. It is known that the earliest construction by [Thorup and Zwick, 2001] is path-reporting, but the parameters are worse by a factor of k. In a later construction by [Wulff-Nilsen, 2013], the query time was improved from O(k) to O(log k). Better trade-offs were discovered in [Elkin and Pettie, 2015] where the authors broke the O(kn^{1+1/k}) space barrier and achieved O(n^{1+1/k} log k) space with O(log k) query time, but their stretch was blown up to a polynomial O(k^{log4}/^{3 7}); they also gave an alternative choice of O(n^{1+1/k}) space which is optimal, and O(k)-stretch which is also optimal up to a constant factor, but their query time rose exponentially to O(n^{ϵ}). In a recent work [Elkin and Shabat, 2023], the authors obtained significant improvements of O(n^{1+1/k} log k) space, O(k)-stretch, and O(log log k) query time, or O(n^{1+1/k}) space, O(k log k)-stretch, and O(log log k) query time. All the above constructions of path-reporting distance oracles share a common barrier; that is, they could not achieve optimal space O(n^{1+1/k}) and stretch O(k) simultaneously within logarithmic query time; for example, in the natural regime where k = ⌈log n⌉, previous distance oracles had to pay an extra factor of log log n either in the space or stretch. As our result, we bypass this barrier by a new construction of path-reporting distance oracles with O(n^{1+1/k}) space and O(k)-stretch and O(log log k) query time.

Original language | English |
---|---|

Title of host publication | 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 |

Editors | Karl Bringmann, Martin Grohe, Gabriele Puppis, Ola Svensson |

Publisher | Schloss Dagstuhl- Leibniz-Zentrum fur Informatik GmbH, Dagstuhl Publishing |

ISBN (Electronic) | 9783959773225 |

DOIs | |

State | Published - Jul 2024 |

Event | 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 - Tallinn, Estonia Duration: 8 Jul 2024 → 12 Jul 2024 |

### Publication series

Name | Leibniz International Proceedings in Informatics, LIPIcs |
---|---|

Volume | 297 |

ISSN (Print) | 1868-8969 |

### Conference

Conference | 51st International Colloquium on Automata, Languages, and Programming, ICALP 2024 |
---|---|

Country/Territory | Estonia |

City | Tallinn |

Period | 8/07/24 → 12/07/24 |

### Funding

Funders | Funder number |
---|---|

European Research Council | |

Horizon 2020 Framework Programme | 803118 UncertainENV |

## Keywords

- distance oracles
- graph algorithms
- shortest paths