TY - JOUR
T1 - Parameterized syncmer schemes improve long-read mapping
AU - Dutta, Abhinav
AU - Pellow, David
AU - Shamir, Ron
N1 - Publisher Copyright:
© 2022 Dutta et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2022/10
Y1 - 2022/10
N2 - Motivation Sequencing long reads presents novel challenges to mapping. One such challenge is low sequence similarity between the reads and the reference, due to high sequencing error and mutation rates. This occurs, e.g., in a cancer tumor, or due to differences between strains of viruses or bacteria. A key idea in mapping algorithms is to sketch sequences with their minimizers. Recently, syncmers were introduced as an alternative sketching method that is more robust to mutations and sequencing errors. Results We introduce parameterized syncmer schemes (PSS), a generalization of syncmers, and provide a theoretical analysis for multi-parameter schemes. By combining PSS with downsampling or minimizers we can achieve any desired compression and window guarantee. We implemented the use of PSS in the popular minimap2 and Winnowmap2 mappers. In tests on simulated and real long-read data from a variety of genomes, the PSS-based algorithms, with scheme parameters selected on the basis of our theoretical analysis, reduced unmapped reads by 20-60% at high compression while usually using less memory. The advantage was more pronounced at low sequence identity. At sequence identity of 75% and medium compression, PSS-minimap had only 37% as many unmapped reads, and 8% fewer of the reads that did map were incorrectly mapped. Even at lower compression and error rates, PSS-based mapping mapped more reads than the original minimizer-based mappers as well as mappers using the original syncmer schemes. We conclude that using PSS can improve mapping of long reads in a wide range of settings.
AB - Motivation Sequencing long reads presents novel challenges to mapping. One such challenge is low sequence similarity between the reads and the reference, due to high sequencing error and mutation rates. This occurs, e.g., in a cancer tumor, or due to differences between strains of viruses or bacteria. A key idea in mapping algorithms is to sketch sequences with their minimizers. Recently, syncmers were introduced as an alternative sketching method that is more robust to mutations and sequencing errors. Results We introduce parameterized syncmer schemes (PSS), a generalization of syncmers, and provide a theoretical analysis for multi-parameter schemes. By combining PSS with downsampling or minimizers we can achieve any desired compression and window guarantee. We implemented the use of PSS in the popular minimap2 and Winnowmap2 mappers. In tests on simulated and real long-read data from a variety of genomes, the PSS-based algorithms, with scheme parameters selected on the basis of our theoretical analysis, reduced unmapped reads by 20-60% at high compression while usually using less memory. The advantage was more pronounced at low sequence identity. At sequence identity of 75% and medium compression, PSS-minimap had only 37% as many unmapped reads, and 8% fewer of the reads that did map were incorrectly mapped. Even at lower compression and error rates, PSS-based mapping mapped more reads than the original minimizer-based mappers as well as mappers using the original syncmer schemes. We conclude that using PSS can improve mapping of long reads in a wide range of settings.
UR - http://www.scopus.com/inward/record.url?scp=85141891324&partnerID=8YFLogxK
U2 - 10.1371/journal.pcbi.1010638
DO - 10.1371/journal.pcbi.1010638
M3 - מאמר
C2 - 36306319
AN - SCOPUS:85141891324
VL - 18
JO - PLoS Computational Biology
JF - PLoS Computational Biology
SN - 1553-734X
IS - 10
M1 - e1010638
ER -