Abstract
Insulin genese expression is restricted to islet β cells of the mammalian pancreas through specific control mechanisms mediated in part by specific transcription factors. The protein encoded by the pancreatic and duodenal homeobox gene 1 (PDX-1) is central in regulating pancreatic development and islet cell function. PDX-1 regulates insulin gene expression and is involved in islet cell-specific expression of various genes. Involvement of PDX-1 in islet-cell differentiation and function has been demonstrated mainly by 'loss-of-function' studies. We used a 'gain-of- function' approach to test whether PDX-1 could endow a non-islet tissue with pancreatic β-cell characteristics in vivo. Recombinant-adenovirus-mediated gene transfer of PDX-1 to the livers of BALB/C and C57BL/6 mice activated expression of the endogenous, otherwise silent, genes for mouse insulin 1 and 2 and prohormone convertase 1/3 (PC 1/3). Expression of PDX-1 resulted in a substantial increase in hepatic immunoreactive insulin levels, compared with that in mice treated with control adenovirus. Hepatic immunoreactive insulin induced by PDX-1 was processed to mature mouse insulin 1 and 2 and was biologically active; it ameliorated hyperglycemia in diabetic mice treated with streptozotocin. These data indicate the capacity of PDX-1 to reprogram extrapancreatic tissue towards a β-cell phenotype, may provide a valuable approach for generating 'self' surrogate β cells, suitable for replacing impaired islet-cell function in diabetics.
Original language | English |
---|---|
Pages (from-to) | 568-572 |
Number of pages | 5 |
Journal | Nature Medicine |
Volume | 6 |
Issue number | 5 |
DOIs | |
State | Published - May 2000 |