Abstract
Both p21ras and protein kinase C (PKC) are believed to function downstream of plasma membrane-associated tyrosine kinases in cellular signal transduction pathways. However, it has remained controversial whether they function in the same pathway and, if so, what their relative position and functional relationship in such a pathway are. We investigated the possibilities that p21ras and PKC function either upstream or downstream of each other in a common linear pathway or that they function independently in colinear signal pathways. Either decreased expression of endogenous normal ras in fibroblasts transfected with an inducible antisense ras construct or overexpression of a mutant ras gene reduced the capacity of the phorbol ester tetradecanoyl phorbol acetate to trigger expression of the tetradecanoyl phorbol acetate-responsive and ras-dependent reporter gene osteopontin (OPN). PKC depletion decreased basal OPN mRNA levels, and the overexpression of ras restored OPN expression to the level of non-PKC-depleted cells. We propose a model in which ras and PKC function in distinct and interdependent signaling pathways.
Original language | English |
---|---|
Pages (from-to) | 1471-1479 |
Number of pages | 9 |
Journal | Molecular and Cellular Biology |
Volume | 13 |
Issue number | 3 |
DOIs | |
State | Published - Mar 1993 |
Externally published | Yes |