Abstract
We present a tool, outward rotations, for enhancing the performance of several semidefinite programming based approximation algorithms. Using outward rotations, we obtain an approximation algorithm for MAX CUT that, in many interesting cases, performs better than the algorithm of Goemans and Williamson. We also obtain an improved approximation algorithm for MAX NAE-{3}-SAT. Finally, we provide some evidence that outward rotations can also be used to obtain improved approximation algorithms for MAX NAE-SAT and MAX SAT.
Original language | English |
---|---|
Pages (from-to) | 679-687 |
Number of pages | 9 |
Journal | Conference Proceedings of the Annual ACM Symposium on Theory of Computing |
State | Published - 1999 |
Event | Proceedings of the 1999 31st Annual ACM Symposium on Theory of Computing - FCRC '99 - Atlanta, GA, USA Duration: 1 May 1999 → 4 May 1999 |