Orbit while in service

Gabi Hanukov*, Uri Yechiali

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

In various real-life queueing systems, part of the service can be rendered without involvement or presence of the customers themselves. In those queues, customers whose service order is still in process may leave the service station, go to ‘orbit’ for a random length of time, and then return to find out if their order has been completed. Common examples are car’s annual maintenance works, food ordering, etc. In this paper, a thorough analysis of a single-server ‘orbit while in service’ queueing model with general service time is presented. Assuming an Exponentially distributed orbit time, we derive general formulae for the distributions of (i) a customer’s total residence time in the system; (ii) a customer’s net actual residence time in the system during service (not including orbit time); (iii) the time an orbiting customer is late to return, i.e., remains in orbit after his/her service has been completed; and (iv) the total number of customers in the system. Considering the family of Gamma-distributed service times (spanning the range of distributions between the Exponential and the Deterministic), as well as the Uniform distribution, we further derive explicit formulae for the distributions of the above variables. Under linear cost assumptions, the optimal mean orbit time is numerically calculated for each of the above service-time distributions. Figures depicting the behavior of the measures as functions of the parameters are presented.

Original languageEnglish
Article number18
JournalOperational Research
Volume24
Issue number2
DOIs
StatePublished - Jun 2024

Keywords

  • 60K25
  • 90B22
  • Impatient customers
  • Orbit
  • Queueing
  • Stochastic processes

Fingerprint

Dive into the research topics of 'Orbit while in service'. Together they form a unique fingerprint.

Cite this