TY - JOUR
T1 - Orbit while in service
AU - Hanukov, Gabi
AU - Yechiali, Uri
N1 - Publisher Copyright:
© The Author(s) 2024.
PY - 2024/6
Y1 - 2024/6
N2 - In various real-life queueing systems, part of the service can be rendered without involvement or presence of the customers themselves. In those queues, customers whose service order is still in process may leave the service station, go to ‘orbit’ for a random length of time, and then return to find out if their order has been completed. Common examples are car’s annual maintenance works, food ordering, etc. In this paper, a thorough analysis of a single-server ‘orbit while in service’ queueing model with general service time is presented. Assuming an Exponentially distributed orbit time, we derive general formulae for the distributions of (i) a customer’s total residence time in the system; (ii) a customer’s net actual residence time in the system during service (not including orbit time); (iii) the time an orbiting customer is late to return, i.e., remains in orbit after his/her service has been completed; and (iv) the total number of customers in the system. Considering the family of Gamma-distributed service times (spanning the range of distributions between the Exponential and the Deterministic), as well as the Uniform distribution, we further derive explicit formulae for the distributions of the above variables. Under linear cost assumptions, the optimal mean orbit time is numerically calculated for each of the above service-time distributions. Figures depicting the behavior of the measures as functions of the parameters are presented.
AB - In various real-life queueing systems, part of the service can be rendered without involvement or presence of the customers themselves. In those queues, customers whose service order is still in process may leave the service station, go to ‘orbit’ for a random length of time, and then return to find out if their order has been completed. Common examples are car’s annual maintenance works, food ordering, etc. In this paper, a thorough analysis of a single-server ‘orbit while in service’ queueing model with general service time is presented. Assuming an Exponentially distributed orbit time, we derive general formulae for the distributions of (i) a customer’s total residence time in the system; (ii) a customer’s net actual residence time in the system during service (not including orbit time); (iii) the time an orbiting customer is late to return, i.e., remains in orbit after his/her service has been completed; and (iv) the total number of customers in the system. Considering the family of Gamma-distributed service times (spanning the range of distributions between the Exponential and the Deterministic), as well as the Uniform distribution, we further derive explicit formulae for the distributions of the above variables. Under linear cost assumptions, the optimal mean orbit time is numerically calculated for each of the above service-time distributions. Figures depicting the behavior of the measures as functions of the parameters are presented.
KW - 60K25
KW - 90B22
KW - Impatient customers
KW - Orbit
KW - Queueing
KW - Stochastic processes
UR - http://www.scopus.com/inward/record.url?scp=85189802492&partnerID=8YFLogxK
U2 - 10.1007/s12351-024-00827-8
DO - 10.1007/s12351-024-00827-8
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85189802492
SN - 1109-2858
VL - 24
JO - Operational Research
JF - Operational Research
IS - 2
M1 - 18
ER -