Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe 2 Lattices

Nicolas Morell, Slaven Tepsic, Antoine Reserbat-Plantey, Andrea Cepellotti, Marco Manca, Itai Epstein, Andreas Isacsson, Xavier Marie, Francesco Mauri, Adrian Bachtold*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

49 Scopus citations

Abstract

Nanomechanical resonators have emerged as sensors with exceptional sensitivities. These sensing capabilities open new possibilities in the studies of the thermodynamic properties in condensed matter. Here, we use mechanical sensing as a novel approach to measure the thermal properties of low-dimensional materials. We measure the temperature dependence of both the thermal conductivity and the specific heat capacity of a transition metal dichalcogenide monolayer down to cryogenic temperature, something that has not been achieved thus far with a single nanoscale object. These measurements show how heat is transported by phonons in two-dimensional systems. Both the thermal conductivity and the specific heat capacity measurements are consistent with predictions based on first-principles.

Original languageEnglish
Pages (from-to)3143-3150
Number of pages8
JournalNano Letters
Volume19
Issue number5
DOIs
StatePublished - 8 May 2019
Externally publishedYes

Funding

FundersFunder number
ERC advanced
Foundation Cellex
Severo Ochoa
Horizon 2020 Framework Programme676108, 665884, 692876
European Research Council
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Agència de Gestió d'Ajuts Universitaris i de RecercaSEV-2015-0522, FIS2015-69831-P
Ministerio de Economía y Competitividad
European Regional Development FundP2ELP2-168546

    Keywords

    • MoSe
    • NEMS
    • Optomechanical resonator
    • monolayer
    • specific heat
    • thermal transport
    • transition metal dichalcogenide

    Fingerprint

    Dive into the research topics of 'Optomechanical Measurement of Thermal Transport in Two-Dimensional MoSe 2 Lattices'. Together they form a unique fingerprint.

    Cite this