Optimal Rates for Random Order Online Optimization

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

2 Scopus citations

Abstract

We study online convex optimization in the random order model, recently proposed by Garber et al. [8], where the loss functions may be chosen by an adversary, but are then presented to the online algorithm in a uniformly random order. Focusing on the scenario where the cumulative loss function is (strongly) convex, yet individual loss functions are smooth but might be non-convex, we give algorithms that achieve the optimal bounds and significantly outperform the results of Garber et al. [8], completely removing the dimension dependence and improving their scaling with respect to the strong convexity parameter. Our analysis relies on novel connections between algorithmic stability and generalization for sampling without-replacement analogous to those studied in the with-replacement i.i.d. setting, as well as on a refined average stability analysis of stochastic gradient descent.

Original languageEnglish
Title of host publicationAdvances in Neural Information Processing Systems 34 - 35th Conference on Neural Information Processing Systems, NeurIPS 2021
EditorsMarc'Aurelio Ranzato, Alina Beygelzimer, Yann Dauphin, Percy S. Liang, Jenn Wortman Vaughan
PublisherNeural information processing systems foundation
Pages2097-2108
Number of pages12
ISBN (Electronic)9781713845393
StatePublished - 2021
Event35th Conference on Neural Information Processing Systems, NeurIPS 2021 - Virtual, Online
Duration: 6 Dec 202114 Dec 2021

Publication series

NameAdvances in Neural Information Processing Systems
Volume3
ISSN (Print)1049-5258

Conference

Conference35th Conference on Neural Information Processing Systems, NeurIPS 2021
CityVirtual, Online
Period6/12/2114/12/21

Funding

FundersFunder number
Yandex Initiative in Machine Learning
Horizon 2020 Framework Programme
Blavatnik Family Foundation
European Research Council
Israel Science Foundation2549/19, 993/17
Tel Aviv University
Horizon 2020882396

    Fingerprint

    Dive into the research topics of 'Optimal Rates for Random Order Online Optimization'. Together they form a unique fingerprint.

    Cite this