Optical flow requires multiple strategies (but only one network)

Tal Schuster, Lior Wolf, David Gadot

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

9 Scopus citations

Abstract

We show that the matching problem that underlies optical flow requires multiple strategies, depending on the amount of image motion and other factors. We then study the implications of this observation on training a deep neural network for representing image patches in the context of descriptor based optical flow. We propose a metric learning method, which selects suitable negative samples based on the nature of the true match. This type of training produces a network that displays multiple strategies depending on the input and leads to state of the art results on the KITTI 2012 and KITTI 2015 optical flow benchmarks.

Original languageEnglish
Title of host publicationProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages6921-6930
Number of pages10
ISBN (Electronic)9781538604571
DOIs
StatePublished - 6 Nov 2017
Event30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017 - Honolulu, United States
Duration: 21 Jul 201726 Jul 2017

Publication series

NameProceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Volume2017-January

Conference

Conference30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017
Country/TerritoryUnited States
CityHonolulu
Period21/07/1726/07/17

Funding

FundersFunder number
National Intelligence Service
Intel Collaboration Research Institute for Computational Intelligence

    Fingerprint

    Dive into the research topics of 'Optical flow requires multiple strategies (but only one network)'. Together they form a unique fingerprint.

    Cite this