Abstract
The paper presents the enhancement in the operational limits (boiling, entrainment, sonic, viscous and capillary limits) of heat pipes using silver nanoparticles dispersed in de-ionized (DI) water. The tested nanoparticles concentration ranged from 0.003 vol. % to 0.009 vol. % with particle diameter of <100 nm. The nanofluid as working fluid enhances the effective thermal conductivity of heat pipe by 40%, 58%, and 70%, respectively, for volume concentrations of 0.003%, 0.006%, and 0.009%. For an input heat load of 60 W, the adiabatic vapor temperatures of nanofluid based heat pipes are reduced by 9 °C, 18 °C, and 20 °C, when compared with DI water. This reduction in the operating temperature enhances the thermophysical properties of working fluid and gives a change in the various operational limits of heat pipes. The use of silver nanoparticles with 0.009 vol. % concentration increases the capillary limit value of heat pipe by 54% when compared with DI water. This in turn improves the performance and operating range of the heat pipe.
Original language | English |
---|---|
Article number | 111011 |
Journal | Journal of Heat Transfer |
Volume | 135 |
Issue number | 11 |
DOIs | |
State | Published - 2013 |
Externally published | Yes |
Keywords
- Boiling limit
- Capillary limit
- Entrainment limit
- Heat pipe
- Nanofluid
- Silver
- Sonic limit
- Viscous limit