Online submodular maximization with preemption

Niv Buchbinder, Moran Feldman, Roy Schwartz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Submodular function maximization has been studied extensively in recent years under various constraints and models. The problem plays a major role in various disciplines. We study a natural online variant of this problem in which elements arrive one-by-one and the algorithm has to maintain a solution obeying certain constraints at all times. Upon arrival of an element, the algorithm has to decide whether to accept the element into its solution and may preempt previously chosen elements. The goal is to maximize a sub-modular function over the set of elements in the solution. We study two special cases of this general problem and derive upper and lower bounds on the competitive ratio. Specifically, we design a 1/e-competitive algorithm for the unconstrained case in which the algorithm may hold any subset of the elements, and constant competitive ratio algorithms for the case where the algorithm may hold at most k elements in its solution.

Original languageEnglish
Title of host publicationProceedings of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015
PublisherAssociation for Computing Machinery
Pages1202-1216
Number of pages15
EditionJanuary
ISBN (Electronic)9781611973747
DOIs
StatePublished - 2015
Event26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015 - San Diego, United States
Duration: 4 Jan 20156 Jan 2015

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
NumberJanuary
Volume2015-January

Conference

Conference26th Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015
Country/TerritoryUnited States
CitySan Diego
Period4/01/156/01/15

Fingerprint

Dive into the research topics of 'Online submodular maximization with preemption'. Together they form a unique fingerprint.

Cite this