Online flexible job scheduling for minimum span

Runtian Ren, Xueyan Tang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

In this paper, we study an online Flexible Job Scheduling (FJS) problem. The input of the problem is a set of jobs, each having an arrival time, a starting deadline and a processing length. Each job has to be started by the scheduler between its arrival and its starting deadline. Once started, the job runs for a period of the processing length without interruption. The target is to minimize the span of all the jobs - the time duration in which at least one job is running. We study online FJS under both the non-clairvoyant and clairvoyant settings. In the non-clairvoyant setting, the processing length of each job is not known for scheduling purposes. We first establish a lower bound of μ on the competitive ratio of any deterministic online scheduler, where μ is the max/min job processing length ratio. Then, we propose two O(μ)-competitive schedulers: Batch and Batch+. The Batch+ scheduler is proved to have a tight competitive ratio of (μ + 1). In the clairvoyant setting, the processing length of each job is known at its arrival and can be used for scheduling purposes. We establish a lower bound of √5+1/2 on the competitive ratio of any deterministic online scheduler, and propose two O(1)- competitive schedulers: Classify-by-Duration Batch+ and Profit. The Profit scheduler can achieve a competitive ratio of 4+2√2. Ourwork lays the foundation for extending several online job scheduling problems in cloud and energy-efficient computing to jobs that have laxity in starting.

Original languageEnglish
Title of host publicationSPAA 2017 - Proceedings of the 29th ACM Symposium on Parallelism in Algorithms and Architectures
PublisherAssociation for Computing Machinery
Pages55-66
Number of pages12
ISBN (Electronic)9781450345934
DOIs
StatePublished - 24 Jul 2017
Externally publishedYes
Event29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017 - Washington, United States
Duration: 24 Jul 201726 Jul 2017

Publication series

NameAnnual ACM Symposium on Parallelism in Algorithms and Architectures
VolumePart F129316

Conference

Conference29th ACM Symposium on Parallelism in Algorithms and Architectures, SPAA 2017
Country/TerritoryUnited States
CityWashington
Period24/07/1726/07/17

Keywords

  • Job scheduling
  • Online algorithm
  • Span

Fingerprint

Dive into the research topics of 'Online flexible job scheduling for minimum span'. Together they form a unique fingerprint.

Cite this