On the random 2-stage minimum spanning tree

Abraham D. Flaxman*, Alan Frieze, Michael Krivelevich

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review


It is known [A. M. Frieze, Discrete Appl Math 10 (1985), 47-56] that if the edge costs of the complete graph K n are independent random variables, uniformly distributed between 0 and 1, then the expected cost of the minimum spanning tree is asymptotically equal to ζ (3) = ∑ i=l , i -3. Here we consider the following stochastic two-stage version of this optimization problem. There are two sets of edge costs C M: E → ℝ and c T: E → ℝ, called Monday's prices and Tuesday's prices, respectively. For each edge e, both costs C M (e) and c T (e) are independent random variables, uniformly distributed in [0, 1]. The Monday costs are revealed first. The algorithm has to decide on Monday for each edge e whether to buy it at Monday's price c M(e), or to wait until its Tuesday price c T (e) appears. The set of edges X M bought on Monday is then completed by the set of edges X T bought on Tuesday to form a spanning tree. If both Monday's and Tuesday's prices were revealed simultaneously, then the optimal solution would have expected cost ζ(3)/2 + σ(1). We show that, in the case of two-stage optimization, the expected value of the optimal cost exceeds ζ(3)/2 by an absolute constant ε > 0. We also consider a threshold heuristic, where the algorithm buys on Monday only edges of cost less than α and completes them on Tuesday in an optimal way, and show that the optimal choice for α is α = 1/n with the expected cost ζ (3)- 1/2+0(1). The threshold heuristic is shown to be sub-optimal. Finally we discuss the directed version of the problem, where the task is to construct a spanning outarborescence rooted at a fixed vertex r, and show, somewhat surprisingly, that in this case a simple variant of the threshold heuristic gives the asymptotically optimal value 1 - 1/e + 0 (1).

Original languageEnglish
Pages (from-to)24-36
Number of pages13
JournalRandom Structures and Algorithms
Issue number1
StatePublished - Jan 2006


Dive into the research topics of 'On the random 2-stage minimum spanning tree'. Together they form a unique fingerprint.

Cite this