On the Number of Graphs with a Given Histogram

Shahar Stein Ioushua, Ofer Shayevitz

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

Let G be a large (simple, unlabeled) dense graph on n vertices. Suppose that we only know, or can estimate, the empirical distribution of the number of subgraphs F that each vertex in G participates in, for some fixed small graph F. How many other graphs would look essentially the same to us, i.e., would have a similar local structure? In this paper, we derive upper and lower bounds on the number graphs whose empirical distribution lies close (in the Kolmogorov-Smirnov distance) to that of G. Our bounds are given as solutions to a maximum entropy problem on random graphs of a fixed size k that does not depend on n, under d global density constraints. The bounds are asymptotically close, with a gap that vanishes with d at a rate that depends on the concentration function of the center of the Kolmogorov-Smirnov ball.

Original languageEnglish
Title of host publication2022 IEEE International Symposium on Information Theory, ISIT 2022
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages456-461
Number of pages6
ISBN (Electronic)9781665421591
DOIs
StatePublished - 2022
Event2022 IEEE International Symposium on Information Theory, ISIT 2022 - Espoo, Finland
Duration: 26 Jun 20221 Jul 2022

Publication series

NameIEEE International Symposium on Information Theory - Proceedings
Volume2022-June
ISSN (Print)2157-8095

Conference

Conference2022 IEEE International Symposium on Information Theory, ISIT 2022
Country/TerritoryFinland
CityEspoo
Period26/06/221/07/22

Fingerprint

Dive into the research topics of 'On the Number of Graphs with a Given Histogram'. Together they form a unique fingerprint.

Cite this