On the equilibria of alternating move games

Aaron Roth*, Maria Florina Balcan, Adam Kalai, Yishay Mansour

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

We consider computational aspects of alternating move games, repeated games in which players take actions at alternating time steps rather than playing simultaneously. We show that alternating move games are more tractable than simultaneous move games: we give an FPTAS for computing an ε-approximate equilibrium of an alternating move game with any number of players. In contrast, it is known that for k ≥ 3 players, there is no FPTAS for computing Nash equilibria of simultaneous move repeated games unless P = PPAD. We also consider equilibria in memoryless strategies, which are guaranteed to exist in two player games. We show that for the special case of k = 2 players, all but a negligible fraction of games admit an equilibrium in pure memoryless strategies that can be found in polynomial time. Moreover, we give a PTAS to compute an ε-approximate equilibrium in pure memoryless strategies in any 2 player game that admits an exact equilibrium in pure memoryless strategies.

Original languageEnglish
Title of host publicationProceedings of the 21st Annual ACM-SIAM Symposium on Discrete Algorithms
PublisherAssociation for Computing Machinery (ACM)
Pages805-816
Number of pages12
ISBN (Print)9780898717013
DOIs
StatePublished - 2010
Event21st Annual ACM-SIAM Symposium on Discrete Algorithms - Austin, TX, United States
Duration: 17 Jan 201019 Jan 2010

Publication series

NameProceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms

Conference

Conference21st Annual ACM-SIAM Symposium on Discrete Algorithms
Country/TerritoryUnited States
CityAustin, TX
Period17/01/1019/01/10

Fingerprint

Dive into the research topics of 'On the equilibria of alternating move games'. Together they form a unique fingerprint.

Cite this