On the Ekeland-Hofer-Zehnder capacity of difference body

Research output: Chapter in Book/Report/Conference proceedingChapterpeer-review


It is proven that the Ekeland-Hofer-Zehnder capacity of the difference body of a given convex body W⊂ ℝ2 n satisfies the following inequality CEHZ(W+(−W))≤Cln(n+1)CEHZ(W), $$\displaystyle C_{\mathrm {EHZ}}\left (W+(-W)\right )\leq C \ln \left (n+1\right )C_{\mathrm {EHZ}}\left (W\right ), $$ where C is an absolute constant. Up to a multiplicative constant this inequality is sharp.

Original languageEnglish
Title of host publicationGeometric Aspects of Functional Analysis
Subtitle of host publicationIsrael Seminar (GAFA) 2017-2019 Volume I
EditorsBo'az Klartag, Emanuel Milman
PublisherSpringer, Cham
Number of pages16
ISBN (Electronic)978-3-030-36020-7
ISBN (Print)978-3-030-36019-1
StatePublished - 2020

Publication series

NameLecture Notes in Math.
PublisherSpringer, Cham
ISSN (Print)0075-8434
ISSN (Electronic)1617-9692


Dive into the research topics of 'On the Ekeland-Hofer-Zehnder capacity of difference body'. Together they form a unique fingerprint.

Cite this