On the effective viscosity of a nondilute emulsion of two Stokes fluids with small capillary number

T. Miloh*, Y. Benveniste

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

A rigorous analytical framework is presented for the computation of the effective viscosity of a neutrally buoyant nondilute emulsion of two immiscible Newtonian Stokes fluids. The capillary number, which is a relative measure of viscous forces that tend to distort the drop and of the interfacial tension that favors sphericity, is assumed to be small. Thus drop distortion is ignored to first order and sphericity is preserved under small shear rates. The so-called "direct method," which does not involve any energy concepts, is used and also is shown to be equivalent to the traditional approach based on the dissipation function. The micromechanics model is based on the "generalized self-consistent model" commonly used in composite media. At low concentrations the present theoretical prediction reduces to Taylor's formula [Proc. R. Soc. London Ser. A 138, 41 (1932)] and is also compared against other approximate theories and experimental data for the nondilute case. The agreement is in general surprisingly good. The present model is also shown to fall between some existing bounds, which result from the application of various variational principles. A critical comparison between these bounds is also given.

Original languageEnglish
Pages (from-to)1915-1925
Number of pages11
JournalPhysics of fluids. A, Fluid dynamics
Volume1
Issue number12
DOIs
StatePublished - 1989

Fingerprint

Dive into the research topics of 'On the effective viscosity of a nondilute emulsion of two Stokes fluids with small capillary number'. Together they form a unique fingerprint.

Cite this