On Spectral Approximations with Nonstandard Weight Functions and Their Implementations to Generalized Chaos Expansions

A. Ditkowski, R. Katz

Research output: Contribution to journalArticlepeer-review

Abstract

In this manuscript, we analyze the expansions of functions in orthogonal polynomials associated with a general weight function in a multidimensional setting. Such orthogonal polynomials can be obtained, e.g, by Gram–Schmidt orthogonalization. However, in most cases, they are not eigenfunctions of some singular Sturm–Liouville problem, as is the case for known polynomials, such as the Jacobi polynomials. Therefore, the standard convergence theorems do not apply. Furthermore, since in general multidimensional cases the weight functions are not a tensor product of one-dimensional functions, the orthogonal polynomials are not a product of one-dimensional orthogonal polynomials, as well. This work provides a way of estimating the convergence rate using a comparison lemma. We also present a spectrally convergent, multidimensional, integration method. Numerical examples demonstrate the efficacy of the proposed method. We also show that the use of non-standard weight functions can allow for efficient integration of singular functions. We demonstrate the use of this method to uncertainty quantification problem using Generalized Polynomial Chaos Expansions in the case of dependent random variables, as well.

Original languageEnglish
Pages (from-to)1981-2005
Number of pages25
JournalJournal of Scientific Computing
Volume79
Issue number3
DOIs
StatePublished - 15 Jun 2019

Keywords

  • Collocation methods
  • GPC
  • Generalized chaos expansions
  • Integration methods
  • Orthogonal polynomials
  • Spectral methods

Fingerprint

Dive into the research topics of 'On Spectral Approximations with Nonstandard Weight Functions and Their Implementations to Generalized Chaos Expansions'. Together they form a unique fingerprint.

Cite this