Abstract
The Matrix-Pencil approach to blind source separation estimates the mixing matrix from the Generalized Eigenvalue Decomposition (GEVD), or Exact Joint Diagonalization, of two "target-matrices". In a Second-Order- Statistics framework, these target-matrices are two different correlation matrices (e.g., at different lags, taken over different time-intervals, etc.), attempting to capture the diversity of the sources (e.g., diverse spectra, different nonstationarity profiles, etc.). A central question in this context is how to best choose these target-matrices, given a statistical model for the sources. To answer this question, we consider a general paradigm for the target-matrices, viewed as two "generalized correlation" matrices, whose structure is governed by two selected "Association-Matrices". We then derive an explicit expression (assuming Gaussian sources) for the resulting Interference-to-Source Ratio (ISR) in terms of the Association-Matrices. Subsequently, we show how to minimize the ISR with respect to these matrices, leading to optimized selection of the matrix-pair for GEVD-based separation.
Original language | English |
---|---|
Pages (from-to) | 187-194 |
Number of pages | 8 |
Journal | Lecture Notes in Computer Science |
Volume | 5441 |
DOIs | |
State | Published - 2009 |
Event | 8th International Conference on Independent Component Analysis and Signal Separation, ICA 2009 - Paraty, Brazil Duration: 15 Mar 2009 → 18 Mar 2009 |