ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL TO THE AVERAGE ELEMENT ORDER OF THE ALTERNATING GROUP OF DEGREE 5

Marcel Herzog, Patrizia Longobardi, Mercede Maj

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Let G be a finite group. Denote by ψ(G) the sum ψ(G) = x∈G |x|, where |x| denotes the order of the element x, and by o(G) the average element orders, i.e. the quotient (formula presented). We prove that (formula presented) if and only if (formula presented), where A5 is the alternating group of degree 5.

Original languageEnglish
Pages (from-to)307-315
Number of pages9
JournalGlasnik Matematicki
Volume58
Issue number2
DOIs
StatePublished - 2023

Funding

FundersFunder number
GNSAGA-INDAM
Istituto Nazionale di Alta Matematica "Francesco Severi"
Gruppo Nazionale per le Strutture Algebriche, Geometriche e le loro Applicazioni

    Keywords

    • Group element orders
    • alternating group

    Fingerprint

    Dive into the research topics of 'ON GROUPS WITH AVERAGE ELEMENT ORDERS EQUAL TO THE AVERAGE ELEMENT ORDER OF THE ALTERNATING GROUP OF DEGREE 5'. Together they form a unique fingerprint.

    Cite this