TY - JOUR
T1 - On Fair Division under Heterogeneous Matroid Constraints
AU - Dror, Amitay
AU - Feldman, Michal
AU - Segal-Halevi, Erel
N1 - Publisher Copyright:
© 2023 AI Access Foundation. All rights reserved.
PY - 2023
Y1 - 2023
N2 - We study fair allocation of indivisible goods among additive agents with feasibility constraints. In these settings, every agent is restricted to get a bundle among a specified set of feasible bundles. Such scenarios have been of great interest to the AI community due to their applicability to real-world problems. Following some impossibility results, we restrict attention to matroid feasibility constraints that capture natural scenarios, such as the allocation of shifts to medical doctors and the allocation of conference papers to referees. We focus on the common fairness notion of envy-freeness up to one good (EF1). Previous algorithms for finding EF1 allocations are either restricted to agents with identical feasibility constraints or allow free disposal of items. An open problem is the existence of EF1 complete allocations among agents who differ both in their valuations and in their feasibility constraints. In this work, we make progress on this problem by providing positive and negative results for several matroid and valuation types. Among other results, we devise polynomial-time algorithms for finding EF1 allocations in the following settings: (i) n agents with heterogeneous (non-identical) binary valuations and partition matroids with heterogeneous capacities; (ii) two agents with heterogeneous additive valuations and partition matroids with heterogeneous capacities; and (iii) three agents with heterogeneous binary valuations and identical base-orderable matroid constraints.
AB - We study fair allocation of indivisible goods among additive agents with feasibility constraints. In these settings, every agent is restricted to get a bundle among a specified set of feasible bundles. Such scenarios have been of great interest to the AI community due to their applicability to real-world problems. Following some impossibility results, we restrict attention to matroid feasibility constraints that capture natural scenarios, such as the allocation of shifts to medical doctors and the allocation of conference papers to referees. We focus on the common fairness notion of envy-freeness up to one good (EF1). Previous algorithms for finding EF1 allocations are either restricted to agents with identical feasibility constraints or allow free disposal of items. An open problem is the existence of EF1 complete allocations among agents who differ both in their valuations and in their feasibility constraints. In this work, we make progress on this problem by providing positive and negative results for several matroid and valuation types. Among other results, we devise polynomial-time algorithms for finding EF1 allocations in the following settings: (i) n agents with heterogeneous (non-identical) binary valuations and partition matroids with heterogeneous capacities; (ii) two agents with heterogeneous additive valuations and partition matroids with heterogeneous capacities; and (iii) three agents with heterogeneous binary valuations and identical base-orderable matroid constraints.
UR - http://www.scopus.com/inward/record.url?scp=85153683372&partnerID=8YFLogxK
U2 - 10.1613/JAIR.1.13779
DO - 10.1613/JAIR.1.13779
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85153683372
SN - 1076-9757
VL - 76
SP - 567
EP - 611
JO - Journal of Artificial Intelligence Research
JF - Journal of Artificial Intelligence Research
ER -