Abstract
Stability of linear systems with uncertain bounded time-varying delays is studied under the assumption that the nominal delay values are not equal to zero. An input-output approach to stability of such systems is known to be based on the bound of the L2-norm of a certain integral operator. There exists a bound on this operator norm in two cases: in the case where the delay derivative is not greater than 1 and in the case without any constraints on the delay derivative. In the present note we fill the gap between the two cases by deriving a tight operator bound which is an increasing and continuous function of the delay derivative upper bound d ≥ 1. For d → ∞ the new bound corresponds to the second case and improves the existing bound. As a result, for the first time, delay-derivative-dependent frequency domain and time domain stability criteria are derived for systems with the delay derivative greater than 1.
Original language | English |
---|---|
Pages (from-to) | 1649-1655 |
Number of pages | 7 |
Journal | Automatica |
Volume | 43 |
Issue number | 9 |
DOIs | |
State | Published - Sep 2007 |
Keywords
- Input-output approach
- L-norm
- Stability
- Time-varying delay