TY - JOUR
T1 - On characters in the principal 2-block
AU - Berger, Thomas R.
AU - Herzog, Marcel
PY - 1978/5
Y1 - 1978/5
N2 - Let k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(l) - X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to PSL(2,2″), n [Formula Omitted] 2.
AB - Let k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(l) - X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to PSL(2,2″), n [Formula Omitted] 2.
UR - http://www.scopus.com/inward/record.url?scp=84934789736&partnerID=8YFLogxK
U2 - 10.1017/S1446788700021017
DO - 10.1017/S1446788700021017
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84934789736
SN - 1446-7887
VL - 25
SP - 264
EP - 268
JO - Journal of the Australian Mathematical Society
JF - Journal of the Australian Mathematical Society
IS - 3
ER -