TY - JOUR

T1 - On characters in the principal 2-block

AU - Berger, Thomas R.

AU - Herzog, Marcel

PY - 1978/5

Y1 - 1978/5

N2 - Let k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(l) - X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to PSL(2,2″), n [Formula Omitted] 2.

AB - Let k be a complex number and let u be an element of a finite group G. Suppose that u does not belong to O(G), the maximal normal subgroup of G of odd order. It is shown that G satisfies X(l) - X(u) = k for every complex nonprincipal irreducible character X in the principal 2-block of G if and only if G/O(G) is isomorphic either to C2, a cyclic group of order 2, or to PSL(2,2″), n [Formula Omitted] 2.

UR - http://www.scopus.com/inward/record.url?scp=84934789736&partnerID=8YFLogxK

U2 - 10.1017/S1446788700021017

DO - 10.1017/S1446788700021017

M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???

AN - SCOPUS:84934789736

SN - 1446-7887

VL - 25

SP - 264

EP - 268

JO - Journal of the Australian Mathematical Society

JF - Journal of the Australian Mathematical Society

IS - 3

ER -