TY - JOUR
T1 - Observational constraints on tidal effects using orbital eccentricities
AU - Husnoo, Nawal
AU - Pont, Frédéric
AU - Mazeh, Tsevi
AU - Fabrycky, Daniel
AU - Hébrard, Guillaume
AU - Bouchy, François
AU - Shporer, Avi
PY - 2012/6
Y1 - 2012/6
N2 - We have analysed radial velocity measurements for known transiting exoplanets to study the empirical signature of tidal orbital evolution for close-in planets. Compared to standard eccentricity determination, our approach is modified to focus on the rejection of the null hypothesis of a circular orbit. We are using a Markov Chain Monte Carlo analysis of radial velocity measurements and photometric constraints, including a component of correlated noise, as well as Bayesian model selection to check if the data justify the additional complexity of an eccentric orbit. We find that among planets with non-zero eccentricity values quoted in the literature, there is no evidence for an eccentricity detection for the seven planets CoRoT-5b, WASP-5b, WASP-6b, WASP-10b, WASP-12b, WASP-17b and WASP-18b. In contrast, we confirm the eccentricity of HAT-P-16b, e= 0.034 ± 0.003, the smallest eccentricity that is reliably measured so far for an exoplanet as well as that of WASP-14b, which is the planet at the shortest period (P= 2.24d), with a confirmed eccentricity, e= 0.088 ± 0.003. As part of the study, we present new radial velocity data using the HARPS spectrograph for CoRoT-1, CoRoT-3, WASP-2, WASP-4, WASP-5 and WASP-7 as well as the SOPHIE spectrograph for HAT-P-4, HAT-P-7, TrES-2 and XO-2. We show that the dissipative effect of tides raised in the planet by the star and vice versa explain all the eccentricity and spin-orbit alignment measurements available for transiting planets. We revisit the mass-period relation and consider its relation to the stopping mechanism of orbital migration for hot Jupiters. In addition to CoRoT-2 and HD 189733, we find evidence for excess rotation of the star in the systems CoRoT-18, HAT-P-20, WASP-19 and WASP-43.
AB - We have analysed radial velocity measurements for known transiting exoplanets to study the empirical signature of tidal orbital evolution for close-in planets. Compared to standard eccentricity determination, our approach is modified to focus on the rejection of the null hypothesis of a circular orbit. We are using a Markov Chain Monte Carlo analysis of radial velocity measurements and photometric constraints, including a component of correlated noise, as well as Bayesian model selection to check if the data justify the additional complexity of an eccentric orbit. We find that among planets with non-zero eccentricity values quoted in the literature, there is no evidence for an eccentricity detection for the seven planets CoRoT-5b, WASP-5b, WASP-6b, WASP-10b, WASP-12b, WASP-17b and WASP-18b. In contrast, we confirm the eccentricity of HAT-P-16b, e= 0.034 ± 0.003, the smallest eccentricity that is reliably measured so far for an exoplanet as well as that of WASP-14b, which is the planet at the shortest period (P= 2.24d), with a confirmed eccentricity, e= 0.088 ± 0.003. As part of the study, we present new radial velocity data using the HARPS spectrograph for CoRoT-1, CoRoT-3, WASP-2, WASP-4, WASP-5 and WASP-7 as well as the SOPHIE spectrograph for HAT-P-4, HAT-P-7, TrES-2 and XO-2. We show that the dissipative effect of tides raised in the planet by the star and vice versa explain all the eccentricity and spin-orbit alignment measurements available for transiting planets. We revisit the mass-period relation and consider its relation to the stopping mechanism of orbital migration for hot Jupiters. In addition to CoRoT-2 and HD 189733, we find evidence for excess rotation of the star in the systems CoRoT-18, HAT-P-20, WASP-19 and WASP-43.
KW - Planetary systems
UR - http://www.scopus.com/inward/record.url?scp=84861229160&partnerID=8YFLogxK
U2 - 10.1111/j.1365-2966.2012.20839.x
DO - 10.1111/j.1365-2966.2012.20839.x
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84861229160
SN - 0035-8711
VL - 422
SP - 3151
EP - 3177
JO - Monthly Notices of the Royal Astronomical Society
JF - Monthly Notices of the Royal Astronomical Society
IS - 4
ER -