Object recognition with features inspired by visual cortex

Thomas Serre*, Lior Wolf, Tomaso Poggio

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

We introduce a novel set of features for robust object recognition. Each element of this set is a complex feature obtained by combining position- and scale-tolerant edge-detectors over neighboring positions and multiple orientations. Our system's architecture is motivated by a quantitative model of visual cortex. We show that our approach exhibits excellent recognition performance and outperforms several state-of-the-art systems on a variety of image datasets including many different object categories. We also demonstrate that our system is able to learn from very few examples. The performance of the approach constitutes a suggestive plausibility proof for a class of feedforward models of object recognition in cortex.

Original languageEnglish
Title of host publicationProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
PublisherIEEE Computer Society
Pages994-1000
Number of pages7
ISBN (Print)0769523722, 9780769523729
DOIs
StatePublished - 2005
Externally publishedYes
Event2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005 - San Diego, CA, United States
Duration: 20 Jun 200525 Jun 2005

Publication series

NameProceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
VolumeII

Conference

Conference2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005
Country/TerritoryUnited States
CitySan Diego, CA
Period20/06/0525/06/05

Fingerprint

Dive into the research topics of 'Object recognition with features inspired by visual cortex'. Together they form a unique fingerprint.

Cite this