Abstract
The numerical and spectral performance of novel infinite elements for exterior problems of time-harmonic acoustics are examined. The formulation is based on a functional which provides a general framework for domain-based computation of exterior problems. Two prominent features simplify the task of discretization: the infinite elements mesh the interface only and need not match the finite elements on the interface. Various infinite element approximations for two-dimensional configurations with circular interfaces are reviewed. Numerical results demonstrate the good performance of these schemes. A simple study points to the proper interpretation of spectral results for the formulation. The spectral properties of these infinite elements are examined with a view to the representation of physics and efficient numerical solution.
Original language | English |
---|---|
Pages (from-to) | 553-577 |
Number of pages | 25 |
Journal | International Journal for Numerical Methods in Engineering |
Volume | 46 |
Issue number | 4 |
DOIs | |
State | Published - 10 Oct 1999 |
Keywords
- Acoustics
- DtN boundary conditions
- Finite element methods
- Infinite elements
- Unbounded domains