TY - JOUR
T1 - Novel systems for in vivo monitoring and microenvironmental investigations of diabetic neuropathy in a murine model
AU - Amit, Sharon
AU - Yaron, Avraham
N1 - Funding Information:
We are grateful to Dr. Guy Shakhar (Depratment of Immunology, the Weizmann Institute) and Mr. Yosef Addadi (Department of Biological Regulation, the Weizmann Institute) for their help with the two-photon microscopy and anesthesia, Dr. Rony Paz (Department of Neurobiology, the Weizmann Institute) for the statistical analysis and Dr. J Sanse, (Department of Cellular and Molecular Biology, Harvard University) for the YFP-16 mouse line. The research was funded by the Nella and Leon Benoziyo Center for Neurological Diseases of the Weizmann Institute.
PY - 2012/11
Y1 - 2012/11
N2 - Peripheral neuropathy is a devastating complication of diabetes conferring vast morbidity and mortality. Despite prolonged efforts to elucidate the mechanisms underlying diabetic related neuropathic phenomena and develop effective therapies, current treatment is for the most part glycemic control and symptomatic care. This is partially due to the intricate pathophysiology of diabetic neuropathy and the scarcity of valid experimental models. The aim of the study was to establish novel systems enabling monitoring and dissection of significant processes in the development of diabetic neuropathy. In a non-invasive in vivo model, two-photon microscopy is applied to evaluate mechanoreceptors (Meissner corpuscles) within an intact footpad of transgenic mice expressing a fluorescent neuronal tracer. By applying this advanced technology, which couples potent tissue penetration with superb resolution, we documented qualitative and quantitative diabetes-specific alterations in these sensory structures. Detection of such changes previously required laborious invasive histopathological techniques. In parallel, we present an ex vivo system that mimics the native microenvironment of the nerve ending via a unique co-culture of primary sensory neurons and thin skin slices. In conjunction with innovative high-throughput digital axonal measurements and computerized quantification tools, this method enables an unbiased exploration of neuronal autonomous and non-autonomous malfunctions. Using this setup we demonstrate that while the diabetic nerve retains a near-normal growth and regeneration capacities, the diabetic skin exhibits a decreased ability to support axonal outgrowth. Thus, an early target organ failure rather than intrinsic neuronal failure may initiate the neuropathy. Overall, the illustrated experimental platforms may greatly facilitate the holistic investigation of diabetic neuropathy.
AB - Peripheral neuropathy is a devastating complication of diabetes conferring vast morbidity and mortality. Despite prolonged efforts to elucidate the mechanisms underlying diabetic related neuropathic phenomena and develop effective therapies, current treatment is for the most part glycemic control and symptomatic care. This is partially due to the intricate pathophysiology of diabetic neuropathy and the scarcity of valid experimental models. The aim of the study was to establish novel systems enabling monitoring and dissection of significant processes in the development of diabetic neuropathy. In a non-invasive in vivo model, two-photon microscopy is applied to evaluate mechanoreceptors (Meissner corpuscles) within an intact footpad of transgenic mice expressing a fluorescent neuronal tracer. By applying this advanced technology, which couples potent tissue penetration with superb resolution, we documented qualitative and quantitative diabetes-specific alterations in these sensory structures. Detection of such changes previously required laborious invasive histopathological techniques. In parallel, we present an ex vivo system that mimics the native microenvironment of the nerve ending via a unique co-culture of primary sensory neurons and thin skin slices. In conjunction with innovative high-throughput digital axonal measurements and computerized quantification tools, this method enables an unbiased exploration of neuronal autonomous and non-autonomous malfunctions. Using this setup we demonstrate that while the diabetic nerve retains a near-normal growth and regeneration capacities, the diabetic skin exhibits a decreased ability to support axonal outgrowth. Thus, an early target organ failure rather than intrinsic neuronal failure may initiate the neuropathy. Overall, the illustrated experimental platforms may greatly facilitate the holistic investigation of diabetic neuropathy.
KW - Diabetic neuropathy
KW - High-throughput analysis
KW - In vivo imaging
KW - Microenviornment
UR - http://www.scopus.com/inward/record.url?scp=84869487953&partnerID=8YFLogxK
U2 - 10.1007/s00702-012-0808-9
DO - 10.1007/s00702-012-0808-9
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22592935
AN - SCOPUS:84869487953
SN - 0300-9564
VL - 119
SP - 1317
EP - 1325
JO - Journal of Neural Transmission
JF - Journal of Neural Transmission
IS - 11
ER -