TY - JOUR
T1 - Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation
AU - Aviner, Ranen
AU - Geiger, Tamar
AU - Elroy-Stein, Orna
PY - 2013/8/15
Y1 - 2013/8/15
N2 - Monitoring protein synthesis is essential to our understanding of gene expression regulation, as protein abundance is thought to be predominantly controlled at the level of translation.Mass-spectrometric and RNA sequencingmethods have been recently developed for investigating mRNA translation at a global level, but these still involve technical limitations and are not widely applicable. In this study, we describe a novel system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins under cell-free conditions followed by streptavidin affinity purification and liquid chromatography-tandem mass spectrometry analysis. Using PUNCH-P, we measured cell cycle-specific fluctuations in synthesis for >5000 proteins in mammalian cells, identified proteins not previously implicated in cell cycle processes, and generated the first translational profile of a whole mouse brain. This simple and economical technique is broadly applicable to any cell type and tissue, enabling the identification and quantification of rapid proteome responses under various biological conditions.
AB - Monitoring protein synthesis is essential to our understanding of gene expression regulation, as protein abundance is thought to be predominantly controlled at the level of translation.Mass-spectrometric and RNA sequencingmethods have been recently developed for investigating mRNA translation at a global level, but these still involve technical limitations and are not widely applicable. In this study, we describe a novel system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins under cell-free conditions followed by streptavidin affinity purification and liquid chromatography-tandem mass spectrometry analysis. Using PUNCH-P, we measured cell cycle-specific fluctuations in synthesis for >5000 proteins in mammalian cells, identified proteins not previously implicated in cell cycle processes, and generated the first translational profile of a whole mouse brain. This simple and economical technique is broadly applicable to any cell type and tissue, enabling the identification and quantification of rapid proteome responses under various biological conditions.
KW - Cell cycle
KW - PUNCH-P
KW - Protein synthesis
KW - Proteomics
KW - Puromycin
KW - Translation
UR - http://www.scopus.com/inward/record.url?scp=84882701594&partnerID=8YFLogxK
U2 - 10.1101/gad.219105.113
DO - 10.1101/gad.219105.113
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84882701594
SN - 0890-9369
VL - 27
SP - 1834
EP - 1844
JO - Genes and Development
JF - Genes and Development
IS - 16
ER -