TY - JOUR
T1 - Nonsense mutation suppression is enhanced by targeting different stages of the protein synthesis process
AU - Wittenstein, Amnon
AU - Caspi, Michal
AU - Rippin, Ido
AU - Elroy-Stein, Orna
AU - Eldar-Finkelman, Hagit
AU - Thoms, Sven
AU - Rosin-Arbesfeld, Rina
N1 - Publisher Copyright:
Copyright: © 2023 Wittenstein et al.
PY - 2023/11
Y1 - 2023/11
N2 - AU The:introduction Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly of premature termination codons (PTCs), as : a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.
AB - AU The:introduction Pleaseconfirmthatallheadinglevelsarerepresentedcorrectly of premature termination codons (PTCs), as : a result of splicing defects, insertions, deletions, or point mutations (also termed nonsense mutations), lead to numerous genetic diseases, ranging from rare neuro-metabolic disorders to relatively common inheritable cancer syndromes and muscular dystrophies. Over the years, a large number of studies have demonstrated that certain antibiotics and other synthetic molecules can act as PTC suppressors by inducing readthrough of nonsense mutations, thereby restoring the expression of full-length proteins. Unfortunately, most PTC readthrough-inducing agents are toxic, have limited effects, and cannot be used for therapeutic purposes. Thus, further efforts are required to improve the clinical outcome of nonsense mutation suppressors. Here, by focusing on enhancing readthrough of pathogenic nonsense mutations in the adenomatous polyposis coli (APC) tumor suppressor gene, we show that disturbing the protein translation initiation complex, as well as targeting other stages of the protein translation machinery, enhances both antibiotic and non-antibiotic-mediated readthrough of nonsense mutations. These findings strongly increase our understanding of the mechanisms involved in nonsense mutation readthrough and facilitate the development of novel therapeutic targets for nonsense suppression to restore protein expression from a large variety of disease-causing mutated transcripts.
UR - http://www.scopus.com/inward/record.url?scp=85176457107&partnerID=8YFLogxK
U2 - 10.1371/journal.pbio.3002355
DO - 10.1371/journal.pbio.3002355
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37943958
AN - SCOPUS:85176457107
SN - 1544-9173
VL - 21
JO - PLoS Biology
JF - PLoS Biology
IS - 11 November
M1 - e3002355
ER -