TY - JOUR
T1 - Noninvasive Real-Time Glucose Monitoring Is in the Near Future
AU - Hirsch, Irl B.
AU - Tirosh, Amir
AU - Navon, Ami
N1 - Publisher Copyright:
© Irl B. Hirsch, et al., 2024.
PY - 2024/9/1
Y1 - 2024/9/1
N2 - Objective: Since the introduction of continuous glucose monitoring (CGM) technology, developers have rigorously researched the feasibility of creating a noninvasive glucose monitoring device. In a recent pilot study, investigators reported a strong correlation between glucose values obtained from novel noninvasive monitoring device (GWave) values to venous and capillary glucose measurements. Research Design and Methods: We investigated whether the level of accuracy observed in the pilot study could be reproduced in a larger cohort, using a smaller third-generation manufacturable device (Gen III GWave) containing a standardized sensor chip that can be mass produced for commercial use. The evaluation assessed concordance with capillary blood glucose, reproducibility between two Gen III devices, and accuracy during insulin-induced hypoglycemia. Results: Assessment of samples from 75 subjects (type 2 diabetes, n = 6; type 1 diabetes, n = 28; nondiabetic pregnant subjects, n = 10; and nondiabetic, n = 31) showed that 97% of values were in Zone A with 3% in Zone B of the Clarke Error Grid, with a mean absolute relative difference of 6.7% from reference blood glucose. Comparison between two independent Gen III GWave devices demonstrated reproducibility between the sensors (R2 = 0.95), with 100% of values within Zone A. In the hypoglycemia assessment, measurements from the Gen III sensor tightly followed the capillary glucose measurements down to 42 mg/dL (2.3 mmol/L), whereas the CGM measurements from two different CGM only converged with the GWave and capillary glucose readings after 90 min of decreasing glucose levels. Conclusion: Our results show promise as potentially the first noninvasive technology. Future studies will focus on larger number of people in all glucose ranges. Real-time noninvasive blood glucose monitoring is possible using GWave technology.
AB - Objective: Since the introduction of continuous glucose monitoring (CGM) technology, developers have rigorously researched the feasibility of creating a noninvasive glucose monitoring device. In a recent pilot study, investigators reported a strong correlation between glucose values obtained from novel noninvasive monitoring device (GWave) values to venous and capillary glucose measurements. Research Design and Methods: We investigated whether the level of accuracy observed in the pilot study could be reproduced in a larger cohort, using a smaller third-generation manufacturable device (Gen III GWave) containing a standardized sensor chip that can be mass produced for commercial use. The evaluation assessed concordance with capillary blood glucose, reproducibility between two Gen III devices, and accuracy during insulin-induced hypoglycemia. Results: Assessment of samples from 75 subjects (type 2 diabetes, n = 6; type 1 diabetes, n = 28; nondiabetic pregnant subjects, n = 10; and nondiabetic, n = 31) showed that 97% of values were in Zone A with 3% in Zone B of the Clarke Error Grid, with a mean absolute relative difference of 6.7% from reference blood glucose. Comparison between two independent Gen III GWave devices demonstrated reproducibility between the sensors (R2 = 0.95), with 100% of values within Zone A. In the hypoglycemia assessment, measurements from the Gen III sensor tightly followed the capillary glucose measurements down to 42 mg/dL (2.3 mmol/L), whereas the CGM measurements from two different CGM only converged with the GWave and capillary glucose readings after 90 min of decreasing glucose levels. Conclusion: Our results show promise as potentially the first noninvasive technology. Future studies will focus on larger number of people in all glucose ranges. Real-time noninvasive blood glucose monitoring is possible using GWave technology.
KW - Continuous glucose monitoring
KW - Noninvasive
KW - Radiofrequency
UR - http://www.scopus.com/inward/record.url?scp=85191750140&partnerID=8YFLogxK
U2 - 10.1089/dia.2024.0009
DO - 10.1089/dia.2024.0009
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 38417015
AN - SCOPUS:85191750140
SN - 1520-9156
VL - 26
SP - 661
EP - 666
JO - Diabetes Technology and Therapeutics
JF - Diabetes Technology and Therapeutics
IS - 9
ER -