Nonequilibrium thermal transport and its relation to linear response

C. Karrasch, R. Ilan, J. E. Moore

Research output: Contribution to journalArticlepeer-review


We study the real-time dynamics of spin chains driven out of thermal equilibrium by an initial temperature gradient TL≠TR using density matrix renormalization group methods. We demonstrate that the nonequilibrium energy current saturates fast to a finite value if the linear-response thermal conductivity is infinite, i.e., if the Drude weight D is nonzero. Our data suggest that a nonintegrable dimerized chain might support such dissipationless transport (D>0). We show that the steady-state value JE of the current for arbitrary TL≠TR is of the functional form JE=f(TL)-f(TR), i.e., it is completely determined by the linear conductance. We argue for this functional form, which is essentially a Stefan-Boltzmann law in this integrable model; for the XXX ferromagnet, f can be computed via the thermodynamic Bethe ansatz in good agreement with the numerics. Inhomogeneous systems exhibiting different bulk parameters as well as Luttinger liquid boundary physics induced by single impurities are discussed briefly.

Original languageEnglish
Article number195129
JournalPhysical Review B - Condensed Matter and Materials Physics
Issue number19
StatePublished - 15 Nov 2013
Externally publishedYes


Dive into the research topics of 'Nonequilibrium thermal transport and its relation to linear response'. Together they form a unique fingerprint.

Cite this