TY - JOUR
T1 - Non-random length distribution of individual telomeres in immunodeficiency, centromeric instability and facial anomalies syndrome, type I
AU - Sagie, Shira
AU - Edni, Omer
AU - Weinberg, Joseph
AU - Toubiana, Shir
AU - Kozlovski, Tal
AU - Frostig, Tzviel
AU - Katzin, Nirit
AU - Bar-Am, Irit
AU - Selig, Sara
N1 - Publisher Copyright:
© The Author 2017. Published by Oxford University Press. All rights reserved.
PY - 2017/11/1
Y1 - 2017/11/1
N2 - Mutations in the de novo DNA methyltransferase DNMT3B lead to Immunodeficiency, Centromeric Instability and Facial anomalies (ICF) syndrome, type I. This syndrome is characterized, among other hypomethylated genomic loci, by severe subtelomeric hypomethylation that is associated with abnormally short telomere length. While it was demonstrated that the mean telomere length is significantly shorter in ICF type I cells, it is unknown whether all telomeres are equally vulnerable to shortening. To study this question we determined by combined telomere-FISH and spectral karyotyping the relative length of each individual telomere in lymphoblastoid cell lines (LCLs) generated from multiple ICF syndrome patients and control individuals. Here we confirm the short telomere lengths, and demonstrate that telomere length variance in the ICF patient group is much larger than in the control group, suggesting that not all telomeres shorten in a uniform manner. We identified a subgroup of telomeres whose relatively short lengths can distinguish with a high degree of certainty between a control and an ICF metaphase, proposing that in ICF syndrome cells, certain individual telomeres are consistently at greater risk to shorten than others. The majority of these telomeres display high sequence identity at the distal 2 kb of their subtelomeres, suggesting that the attenuation in DNMT3B methylation capacity affects individual telomeres to different degrees based, at least in part, on the adjacent subtelomeric sequence composition.
AB - Mutations in the de novo DNA methyltransferase DNMT3B lead to Immunodeficiency, Centromeric Instability and Facial anomalies (ICF) syndrome, type I. This syndrome is characterized, among other hypomethylated genomic loci, by severe subtelomeric hypomethylation that is associated with abnormally short telomere length. While it was demonstrated that the mean telomere length is significantly shorter in ICF type I cells, it is unknown whether all telomeres are equally vulnerable to shortening. To study this question we determined by combined telomere-FISH and spectral karyotyping the relative length of each individual telomere in lymphoblastoid cell lines (LCLs) generated from multiple ICF syndrome patients and control individuals. Here we confirm the short telomere lengths, and demonstrate that telomere length variance in the ICF patient group is much larger than in the control group, suggesting that not all telomeres shorten in a uniform manner. We identified a subgroup of telomeres whose relatively short lengths can distinguish with a high degree of certainty between a control and an ICF metaphase, proposing that in ICF syndrome cells, certain individual telomeres are consistently at greater risk to shorten than others. The majority of these telomeres display high sequence identity at the distal 2 kb of their subtelomeres, suggesting that the attenuation in DNMT3B methylation capacity affects individual telomeres to different degrees based, at least in part, on the adjacent subtelomeric sequence composition.
UR - http://www.scopus.com/inward/record.url?scp=85034221410&partnerID=8YFLogxK
U2 - 10.1093/hmg/ddx313
DO - 10.1093/hmg/ddx313
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 28973513
AN - SCOPUS:85034221410
SN - 0964-6906
VL - 26
SP - 4244
EP - 4256
JO - Human Molecular Genetics
JF - Human Molecular Genetics
IS - 21
ER -